direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Paul Hagemann

Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 4-3
Straße des 17. Juni 136
10623 Berlin

Raum MA 479


Sekretariat MA 4-3
Julia Wilton
Raum MA 476


J. Hertrich, P. Hagemann and G. Steidl (2021).
A Unified Approach to Variational Autoencoders and Stochastic Normalizing Flows via Markov Chains.
(arXiv Preprint#2111.12506)

P. Hagemann, J. Hertrich and G. Steidl (2021).
Stochastic Normalizing Flows: a Markov Chains Viewpoint.
(arXiv Preprint:2009.11375)
[arxiv], [Code]

A. Andrle, N. Farchmin, P. Hagemann, S. Heidenreich, V. Soltwisch and G. Steidl (2021).
Invertible Neural Networks Versus MCMC for Posterior Reconstruction in Grazing Incidence X-Ray Fluorescence.
Scale Space and Variational Methods in Computer Vision.
Lecture Notes in Computer Science, vol. 12679, pp. 528-539.
[doi], [arxiv]

P. Hagemann, S. Neumayer (2021).
Stabilizing Invertible Neural Networks Using Mixture Models.
Inverse Problems, vol. 37, no. 8.
[doi], [arxiv], [Code]

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.