direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Johannes Hertrich

Lupe [1]

Technische Universität Berlin
Institut für Mathematik
Sekretariat MA 4-3
Straße des 17. Juni 136
10623 Berlin


Raum MA 477
Tel.: +49 - (0)30 - 314-79758
Email: j.hertrich (at) math.tu-berlin.de
[2]Profiles: Google Scholar [3], Github [4], Orcid [5]

 

Sekretariat MA 4-3
Julia Wilton
Raum MA 476
Email: wilton_(at) math.tu-berlin.de [6]

Publications

J. Hertrich, M. Gräf, R. Beinert and G. Steidl (2022).
Wasserstein Steepest Descent Flows of Discrepancies with Riesz Kernels.
(arXiv Preprint#2211.01804)
[arxiv] [7]

P. Hagemann, J. Hertrich and G. Steidl (2022).
Stochastic Normalizing Flows: a Markov Chains Viewpoint.
SIAM/ASA Journal on Uncertainty Quantification, vol. 10, pp. 1162-1190.
[doi] [8], [arxiv] [9], [Code] [10]

J. Hertrich, A. Houdard and C. Redenbach (2022).
Wasserstein Patch Prior for Image Superresolution.
IEEE Transactions on Computational Imaging, vol. 8, pp. 693-704.
[doi] [11], [arxiv] [12], [Code] [13]

F. Altekrüger, A. Denker, P. Hagemann, J. Hertrich, P. Maass and G. Steidl (2022).
PatchNR: Learning from Small Data by Patch Normalizing Flow Regularization.
(arXiv Preprint#2205.12021)
[arxiv] [14], [Code] [15]

D.P.L. Nguyen, J. Hertrich, J.-F. Aujol and Y. Berthoumieu (2022).
Image super-resolution with PCA reduced generalized Gaussian mixture models.
(HAL Preprint#hal-03664839)
[hal] [16]

J. Hertrich and G. Steidl (2022).
Inertial Stochastic PALM and Applications in Machine Learning.
Sampling Theory, Signal Processing, and Data Analysis, vol. 20, no. 4.
[doi] [17], [arxiv] [18], [Code] [19]

F. Altekrüger and J. Hertrich (2022).
WPPNets and WPPFlows: The Power of Wasserstein Patch Priors for Superresolution.
(arXiv Preprint#2201.08157)
[arxiv] [20], [Code] [21]

J. Hertrich, D.P.L. Nguyen, J.-F. Aujol, D. Bernard, Y. Berthoumieu, A. Saadaldin and G. Steidl (2022).
PCA reduced Gaussian mixture models with application in superresolution.
Inverse Problems and Imaging, vol. 16, pp. 341-366.
[doi] [22], [arxiv] [23], [Code] [24]

J. Hertrich, F. Ba and G. Steidl (2022).
Sparse Mixture Models Inspired by ANOVA Decompositions.
Electronic Transactions on Numerical Analysis, vol. 55, pp. 142-168.
[doi] [25], [arxiv] [26], [Code] [27]

P. Hagemann, J. Hertrich and G. Steidl (2021).
Generalized Normalizing Flows via Markov Chains.
Accepted in: Elements in Non-local Data Interactions: Foundations and Applications.
Cambridge University Press.
[arxiv] [28], [Code] [29]

J. Hertrich, S. Neumayer and G. Steidl (2021).
Convolutional Proximal Neural Networks and Plug-and-Play Algorithms.
Linear Algebra and its Applications, vol 631, pp. 203-234.
[doi] [30], [arxiv] [31], [Code] [32]

M. Hasannasab, J. Hertrich, F. Laus and G. Steidl (2021).
Alternatives to the EM Algorithm for ML-Estimation of Location, Scatter Matrix and Degree of Freedom of the Student-t Distribution.
Numerical Algorithms, vol. 87, pp. 77-118.
[doi] [33], [arxiv] [34], [Code] [35]

T. Batard, J. Hertrich and G. Steidl (2020).
Variational models for color image correction inspired by visual perception and neuroscience.
Journal of Mathematical Imaging and Vision, vol. 62, pp. 1173-1194.
[doi] [36], [hal] [37]

M. Hasannasab, J. Hertrich, S.Neumayer, G. Plonka, S. Setzer and G. Steidl (2020).
Parseval Proximal Neural Networks.
Journal of Fourier Analysis and Applications, vol. 26, no. 59.
[doi] [38], [arxiv] [39], [Code] [40]

M. Bačák, J. Hertrich, S. Neumayer and G. Steidl (2020).
Minimal Lipschitz and ∞-Harmonic Extensions of Vector-Valued Functions on Finite Graphs.
Information and Inference: A Journal of the IMA, vol. 9, pp. 935–959.
[doi] [41], [arxiv] [42], [Code] [43]

J. Hertrich, M. Bačák, S. Neumayer, G. Steidl (2019).
Minimal Lipschitz extensions for vector-valued functions on finite graphs.
M. Burger, J. Lellmann and J. Modersitzki (eds.)
Scale Space and Variational Methods in Computer Vision.
Lecture Notes in Computer Science, 11603, 183-195.
[doi] [44], [Code] [45]

Thesis

Superresolution via Student-t Mixture Models
Master Thesis, 2020
TU Kaiserslautern
[pdf] [46]

Infinity Laplacians on Scalar- and Vector-valued Functions and Optimal Lipschitz Extensions on Graphs
Bachelor Thesis, 2018
TU Kaiserslautern

------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008