direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publications

Monographs
No.
Title
2
Sparse Proteomics Analysis. [1]
Master's Thesis, Technische Universität Berlin, 2015.
Advisor: Prof. Dr. Gitta Kutyniok [2]

1
Analysis von Inpainting mittels Hybrid-Shearlets und Clustered Sparsity. [3]
Bachelor's Thesis
(in german), Technische Universität Berlin, 2013.
Advisor: Prof. Dr. Gitta Kutyniok [4]
Journal Articles
No.
Title
10
M. Genzel and G. Kutyniok
The Mismatch Principle: Statistical Learning Under Large Model Uncertainties
[5]submitted (2018)
9
M. Genzel and A. Stollenwerk
Robust 1-Bit Compressed Sensing via Hinge Loss Minimization [6]
submitted (2018)
8
M. Genzel, G. Kutyniok, and M. März
L1-Analysis Minimization and Generalized (Co-)Sparsity: When Does Recovery Succeed? [7]
submitted (2017)
7
M. Genzel and P. Jung
Recovering Structured Data From Superimposed Non-Linear Measurements [8]
submitted (2017)
6
M. Genzel
High-Dimensional Estimation of Structured Signals from Non-Linear Observations with General Convex Loss Functions. [9]
IEEE Trans. Inf. Theory 63.3 (2017), 1601-1619. [arXiv [10]]
5
T. Conrad, M. Genzel, N. Cvetkovic, N. Wulkow, A. Leichtle, J. Vybiral, G. Kutyniok, and Ch. Schütte
Sparse Proteomics Analysis - a compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry data. [11]
BMC Bioinform. 18 (2017), 160. [arXiv [12]]
4
M. Meixner, T. Fuss, M. Klaus, M. Genzel, and Ch. Genzel
Diffraction Analysis of strongly inhomogeneous residual stress depth distributions by modification of the stress scanning method. II. Experimental implementation. [13]
J. Appl. Cryst. 48.5 (2015), 1451-1461.
3
M. Genzel and G. Kutyniok
Asymptotic Analysis of Inpainting via Universal Shearlet Systems. [14]
SIAM J. Imaging Sci. 7.4 (2014), 2301-2339. [arXiv [15]]

2
D. Apel, M. Klaus, M. Genzel, and Ch. Genzel.
Rietveld-based energy-dispersive residual stress evaluation: analysis of complex stress fields σij(z). [16]
J. Appl. Cryst. 47.2 (2014), 511-526.
1
Ch. Genzel, D. Apel, M. Klaus, M. Genzel, and D. Balzar.
Keynote Lecture: Residual Stress Gradient Analysis by Multiple Di ffraction Line Methods. [17]
Mater. Sci. Forum 768-769 (2013), 3-18.

Conference Articles
No.
Title
2
P. Jung and M. Genzel
Blind Sparse Recovery Using Imperfect Sensor Networks [18]
IEEE Statistical Signal Processing Workshop (SSP), June 10-13, 2018.
1
M. Genzel and Peter Jung
Blind sparse recovery from superimposed non-linear sensor measurements [19]
Sampling Theory and Applications (SampTA), July 3-7, 2017.
Other Articles
No.
Title
1
M. Genzel and G. Kutyniok
A Mathematical Framework for Feature Selection from Real-World Data with Non-Linear Observations [20]
arXiv:1608:08852, 2016.


Further Research Activities (Conferences, Talks, etc.) [21]

------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008