direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

  • Books
  • Refereed Journals
  • Proceedings
  • Preprints and submitted papers
  • Lecture Notes
  • Theses

Books

5) E. Emmrich und C. Trunk
Gut vorbereitet in die erste Mathematikklausur [1] , 2. aktualisierte Auflage
Fachbuchverlag Leipzig im Carl Hanser Verlag, erscheint 06/2020

4) E. Emmrich and P. Wittbold (Eds.)
Analytical and Numerical Aspects of Partial Differential Equations: Notes of a Lecture Series [2]
de Gruyter, Berlin, 2009

3) E. Emmrich und C. Trunk
Gut vorbereitet in die erste Mathematikklausur [3]
Fachbuchverlag Leipzig im Carl Hanser Verlag, 2007

2) E. Emmrich
Gewöhnliche und Operator-Differentialgleichungen:
Eine integrierte Einführung in Randwertprobleme und Evolutionsgleichungen für Studierende [4]
Vieweg Verlag, Wiesbaden, 2004

1) E. Emmrich
Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems
Cuvillier Verlag, Göttingen, 2001
(Zugl. Diss. TU Berlin, Zusammenfassung als PDF [5])

Refereed Journals

45) A. Eikmeier, E. Emmrich
On a multivalued differential equation with nonlocality in time
Vietnam J. Math. (2020)
(link to journal [6]) (PDF [7])
https://doi.org/10.1007/s10013-020-00412-4 [8]

44) A. Bacho, E. Emmrich, and A. Mielke
An existence result and evolutionary Γ-convergence for perturbed gradient systems
Journal of Evolution Equations (2018, accepted for publication)
(link to journal) (arxiv version) [9]

43) A. Eikmeier, E. Emmrich, and H.-C. Kreusler
Nonlinear evolution equations with exponentially decaying memory: Existence via time discretisation, uniqueness, and stability
Comput. Methods Appl. Math. 20 (2020) 1, pp. 89-108
(link to journal) [10] (arXiv version) [11]

42) M. Eisenmann, E. Emmrich, and V. Mehrmann
Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data
Evolution Equations & Control Theory 8 (2019) 2, pp. 315-342
(link to journal)  [12](arxiv version) [13]

41) E. Emmrich and R. Lasarzik
Existence of weak solutions to the Ericksen–Leslie model for a general class of free energies
Math. Methods Appl. Sci. 41 (2019), pp. 6492-6518
(link to journal) [14] (arxiv version) [15]

40) E. Emmrich, S. H. L. Klapp, and R. Lasarzik
Nonstationary models for liquid crystals: A fresh mathematical perspective
Journal of Non-Newton. Fluid Mech. 259 (2018), pp. 32-47
(link to journal) [16] (PDF) [17]

39) E. Emmrich and R. Lasarzik
Weak-strong uniqueness for the general Ericksen–Leslie system in three dimensions
Discrete Contin. Dyn. Syst. 38 (2018) 9, pp. 4617-4635
(link to journal) [18] (arxiv version) [19]

38) W.-J. Beyn, E. Emmrich, and J. Rieger
Semilinear parabolic differential inclusions with one-sided Lipschitz nonlinearities
Journal of Evolution Equations 18 (2018)  3, pp. 1319–1339
(link to journal) [20] (preliminary version as PDF)

37) A. Eikmeier, E. Emmrich, and E. Schöll
Why more physics can help achieving better mathematics
Int. J. Dyn. Control 6 (2018) 3, pp. 973–981
(link to journal) [21] (PDF) [22]

36) E. Emmrich and D. Šiška
Nonlinear stochastic evolution equations of second order with damping
Stochastics and Partial Differential Equations: Analysis and Computations 5 (2017) 1, pp. 81-112
(link to journal) [23] (PDF) [24]

35) E. Emmrich and D. Puhst
A short note on modeling damage in peridynamics
Journal of Elasticity 123 (2016) 2, pp. 245-252
(link to journal) [25] (PDF) [26]

34) E. Emmrich and G. Vallet
On a nonlinear abstract Volterra equation
Journal of Integral Equations and Applications 28 (2016) 1, pp. 75-89
(link to journal) [27] (PDF) [28]

33) E. Emmrich, D. Šiška, and Wróblewska-Kamińska
Equations of second order in time with quasilinear damping: existence in Orlicz spaces via convergence of a full discretisation
Mathematical Methods in the Applied Sciences 39 (2016) 10, pp. 2449-2460
(link to journal) [29] (PDF) [30]

32)  E. Emmrich and D. Puhst
Survey of Existence Results in Nonlinear Peridynamics in Comparison with Local Elastodynamics
Comput. Methods Appl. Math. 15 (2015) 4, pp. 483–496
(link to journal) [31] (PDF) [32]

31) E. Emmrich and D. Puhst
Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics
Nonlinearity 28 (2015) 1, pp. 285–307
(link to journal) [33] (PDF) [34]

30) E. Emmrich, D. Šiška, and M. Thalhammer
On a full discretisation for nonlinear second-order evolution equations with monotone damping: construction, convergence and error estimates
Found. Comput. Math. 15 (2015) 6, pp. 1653-1701
(link to journal) [35] (PDF) [36]

29) E. Emmrich, R. W. Hoppe, R. Kornhuber, and Rolf Dieter Grigorieff.
Applications of Functional Analysis
Computational Methods in Applied Mathematics 13 (2013) 4, pp. 411-413
(link to journal) [37] (PDF) [38]

28) E. Emmrich and V. Mehrmann
Operator Differential-Algebraic Equations arising in Fluid Dynamics
Computational Methods in Applied Mathematics 13 (2013) 4, pp. 443-470
(link to journal) [39]

27) M. Bukal, E. Emmrich, and A. Jüngel
Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation
Numer. Math. 127 (2014) 2, pp. 365-396
(link to journal) [40] (preliminary version as PDF) [41]

26) E. Emmrich and D. Šiška
Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization
J. Differential Equations 255 (2013) 10, pp. 3719-3746
(link to journal) [42] (PDF) [43]

25) E. Emmrich and D. Puhst
Well-posedness of the peridynamic model with Lipschitz continuous pairwise force function
Commun. Math. Sci. 11 (2013) 4, pp. 1039-1049
(link to journal) [44] (preliminary version as PDF) [45]

24) E. Emmrich and A. Wróblewska
Convergence of a full discretization of quasilinear parabolic equations in isotropic and anisotropic Orlicz spaces
SIAM J. Numer. Anal. 51 (2013) 2, pp. 1163-1184
(link to journal) [46] (preliminary version as PDF) [47]

23) E. Emmrich and G. Vallet
Existence via time discretization for a class of doubly nonlinear operator-differential equations of Barenblatt-type
J. Differential Equations 254 (2013) 6, pp. 2499-2514
(link to journal) [48] (preliminary version as PDF)

22) E. Emmrich and D. Šiška
Full discretization of the porous medium/fast diffusion equation based on its very weak formulation
Commun. Math. Sci. 10 (2012) 4, pp. 1055-1080
(link to journal) [49] (preliminary version as PDF) [50]

21) E. Emmrich and M. Thalhammer
A class of integro-differential equations incorporating nonlinear and nonlocal damping with applications in nonlinear elastodynamics: Existence via time discretisation
Nonlinearity 24 (2011), pp. 2523-2546
(link to journal) [51] (preliminary version as PDF) [52]

20) E. Emmrich and D. Šiška
Full discretization of second-order nonlinear evolution equations: strong convergence and applications
Comput. Methods Appl. Math. 11 (2011) 4, pp. 441-459
(link to journal) [53] (PDF) [54]

19) E. Emmrich and M. Thalhammer
Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation
J. Differential Equations 251 (2011) 1, pp. 82-118
(link to journal) [55] (PDF) [56]

18) E. Emmrich
Time discretisation of monotone nonlinear evolution problems by the discontinuous Galerkin method
BIT Numer. Math. 51 (2011) 3, pp. 581-607
(link to journal) [57] (preliminary version as PDF) [58]

17) E. Emmrich and M. Thalhammer
Convergence of a time discretisation for doubly nonlinear evolution equations of second order
Found. Comput. Math. 10 (2010) 2, pp. 171-190
(link to journal) [59] (PDF) [60]

16) E. Emmrich and M. Thalhammer
Stiffly accurate Runge-Kutta methods for nonlinear evolution problems governed by a monotone operator
Math. Comp. 79 (2010), pp. 785-806
(link to journal) [61] (preliminary version as PDF)

15) E. Emmrich
Variable time-step θ-scheme for nonlinear evolution equations governed by a monotone operator
Calcolo 46 (2009) 3, pp. 187-210
(link to journal) [62] (preliminary version as PDF)

14) E. Emmrich
External approximation of nonlinear operator equations
Numer. Funct. Anal. Optim. 30 (2009) 5-6, pp. 486-498
(link to journal) (preliminary version as PDF) [63]

13) E. Emmrich
Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator
BIT Numer. Math. 49 (2009), pp. 297-323
(link to journal) [64] (preliminary version as PDF)

12) E. Emmrich
Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations
Comput. Methods Appl. Math. 9 (2009) 1, pp. 37-62
(link to journal) [65] (PDF)

11) E. Emmrich
Convergence of a time discretization for a class of non-Newtonian fluid flow
Commun. Math. Sci. 6 (2008) 4, pp. 827-843
(link to journal) [66] (preliminary version as PDF) [67]

10) E. Emmrich and O. Weckner
On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity
Commun. Math. Sci. 5 (2007) 4, pp. 851-864
(link to journal) [68] (preliminary version as PDF) [69]

9) E. Emmrich and O. Weckner
Analysis and numerical approximation of an integro-differential equation modelling non-local effects in linear elasticity
Math. Mech. Solids. 12 (2007) 4, pp. 363-384
(link to journal) [70] (preliminary version as PDF) [71]

8) E. Emmrich
Supraconvergence and supercloseness of a discretisation for elliptic third-kind boundary-value problems on polygonal domains
Comput. Methods Appl. Math. 7 (2007) 2, pp. 135-162
(link to journal) [72] (PDF) [73]

7) E. Emmrich and O. Weckner
The peridynamic equation and its spatial discretisation
Math. Model. Anal. 12 (2007) 1, pp. 17-27
(link to journal) [74] (PDF) [75]

6) E. Emmrich and R. D. Grigorieff
Supraconvergence of a finite difference scheme for elliptic third kind boundary value problems in fractional order Sobolev spaces
Comput. Methods Appl. Math. 6 (2006) 2, pp. 154-177
(link to journal) [76] (PDF) [77]

5) E. Emmrich and H. Schmitt
Numerical treatment of a class of optimal control problems arising in economics
Optim. Meth. Software 21 (2006) 5, pp. 746-766
(link to journal) [78] (preliminary version as PDF) [79]

4) E. Emmrich and O. Weckner
Numerical simulation of the dynamics of a nonlocal, inhomogeneous, infinite bar
J. Comput. Appl. Mech. 6 (2005) 2, pp. 311-319
(link to journal) (PDF) [80]

3) E. Emmrich
Stability and error of the variable two-step BDF for semilinear parabolic problems
J. Appl. Math. & Computing 19 (2005) 1-2, pp. 33-55
(link to journal) [81] (PDF)

2) E. Emmrich
Error of the two-step BDF for the incompressible Navier-Stokes problem
M2AN Math. Model. Numer. Anal. 38 (2004) 5, pp. 757-764
(link to journal) [82] (extended preprint version as PDF) [83]

1) E. Emmrich
Stability and convergence of the two-step BDF for the incompressible Navier-Stokes problem 
Int. J. Nonlinear Sci. Numer. Simul. 5 (2004) 3, pp. 199-209
(link to journal) [84] (preliminary version as PDF) (PDF, 565,6 KB)

Proceedings

5) E. Emmrich, R. B. Lehoucq, and D. Puhst
Peridynamics: a nonlocal continuum theory
In: M. Griebel and M. A. Schweitzer (eds.),
Meshfree Methods for Partial Differential Equations VI,
Lect. N. Comput. Sci. Engin., Vol. 89, 2013, pp. 45--65
(link to article) [85] (preliminary version as PDF) [86]

4) E. Emmrich
Supraconvergence of a non-uniform discretisation for an elliptic third-kind boundary-value problem with mixed derivatives
In: I. Farago, P. Vabishchevich, L. Vulkov (eds.), Finite Difference Methods: Theory and Applications. Proc. Fourth Intern. Conf. FDM: T&A (Lozenetz, Bulgaria, August 2006), Rousse 2007
(preliminary version as PDF) [87]

3) E. Emmrich and O. Weckner
The peridynamic equation of motion in non-local elasticity theory
In: C. A. Mota Soares et al. (eds.), III European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engineering (Lisbon, June 2006), Springer, 2006, 19 p. (PDF)
(link to proceedings) [88] (preliminary version as PDF) [89]

2) E. Emmrich and O. Weckner
The peridynamic model in non-local elasticity theory
PAMM 6 (2006) 1, pp. 155-156
(link to journal) [90]

1) E. Emmrich
Error analysis for the second order BDF discretization of the incompressible Navier-Stokes problem
In: M. Feistauer, R. Rannacher, K. Kozel (eds.), Numerical Modelling in Continuum Mechanics (Proc. of the 4th Summer Conference Prague, August 2000), pp. 98 - 106, Matfyzpress Prag 2001
(preliminary version as PDF) [91]

Preprints and submitted papers

10) E. Emmrich and R. Lasarzik
Existence of weak solutions to a dynamic model for smectic-A liquid crystals under undulations
(link to journal [92]) (PDF [93])

9) E. Emmrich
A short note on piecewise constant and piecewise linear interpolation (2015)
(PDF) [94]

8) E. Emmrich and V. Mehrmann
Analysis of operator differential-algebraic equations arising in fluid dynamics. Part II. The infinite dimensional case
Preprint 2013-28, Institut für Mathematik, TU Berlin, August 2013, 24 p.
(PDF) [95] 

7) E. Emmrich and V. Mehrmann
Analysis of operator differential-algebraic equations arising in fluid dynamics. Part I. The finite dimensional case 
Preprint 12-2010, Institut für Mathematik, TU Berlin, May 2010, 15 p.
(PDF)  [96]

6) E. Emmrich and J. Kaldasch
Mathematical analysis of the primary network effect
March 2007, 14 p.
(PDF) [97]

5) E. Emmrich
Error of the two-step BDF for the incompressible Navier-Stokes problem
Preprint No. 741, Institut für Mathematik, TU Berlin, August 2002.
(PDF) [98]

4) E. Emmrich
Quantitative error estimates for the implicit Euler scheme for linear evolutionary problems with rough data
Preprint No. 671, Fachbereich Mathematik, TU Berlin, March 2000.
(PDF) [99]

3) E. Emmrich
Discrete versions of Gronwall's lemma and their application to the numerical analysis of parabolic problems
Preprint No. 637, Fachbereich Mathematik, TU Berlin, July 1999.
(PDF) [100]

2) E. Emmrich
Zeitdiskretisierung parabolischer Probleme und Fehlerabschätzungen unter verschiedenen Regularitätsannahmen
In: Preprint MBI-98-1, Universität Magdeburg, Dezember 1997.

1) E. Emmrich
Hydrodynamische Stabilität beim instationären Navier-Stokes-Problem
In: Preprint MBI-94-3, Universität Magdeburg, April 1994

Lecture Notes

E. Emmrich
Wirtschaftsmathematik. Skript zur gleichnamigen Lehrveranstaltung an der International Business School (IBS) Berlin, Mai 2004 
(PDF) [101]

Theses

E. Emmrich
Analysis von Zeitdiskretisierungen des inkompressiblen Navier-Stokes-Problems
Cuvillier Verlag Göttingen, 2001
(Zugl. Diss. TU Berlin, Zusammenfassung als PDF [102]) 


E. Emmrich
Hyperbolische Erhaltungsgleichungen. Aspekte der analytischen und numerischen Lösung. Diplomarbeit. TU Magdeburg, April 1993

Adresse

Technische Universität Berlin
Institut für Mathematik
Fakultät II - Mathematik und Naturwissenschaften
Sekr. MA 5-3
Straße des 17. Juni 136
10623 Berlin
Tel.: +49 30 314-28579
Fax.: +49 30 314-28967
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008