Inhalt des Dokuments
Notes of a Lecture Series
- de Gruyter, Berlin, 2009
[1]
- © de Gruyter
Description
The
topics of the contributions to this book range from an investigation
of the qualitative behaviour of solutions of particular partial
differential equations to the study of the complexity of numerical
methods for the reliable and efficient solution of partial
differential equations. A main focus is on nonlinear problems and
theoretical studies reflecting recent developments of topical
interest.
This book grew out of a series of lectures at
the Technische Universität Berlin held by young mathematicians from
France who followed an invitation for a short-term stay during the
academic years 2007-2009. The book addresses students of mathematics
in their last year, PhD students as well as younger researchers
working in the field of partial differential equations and their
numerical treatment. Most of the contributions only require some basic
knowledge in functional analysis, partial differential equations, and
numerical analysis.
Content
GREGORY A. CHECHKIN AND ANDREY YU. GORITSKY
S. N.
Kruzhkov's lectures on first-order quasilinear PDEs
MARTIN CAMPOS PINTO
Adaptive semi-Lagrangian schemes for Vlasov
equations
JULIEN JIMENEZ
Coupling of a scalar
conservation law with a parabolic problem
STEFAN LE
COZ
Standing waves in nonlinear Schrödinger equations
FREDERIC LEGOLL
Multiscale methods coupling atomistic and
continuum mechanics: some examples of mathematical analysis
SYLVIE MONNIAUX
Maximal regularity and applications to PDEs
Index [2]
ch/Publikationen/Books/EmmrichWittbold_AnalyticalNumeri
calPDEs.jpg
ich/Publikationen/Books/9783110212105_Contents.pdf