Page Content
There is no English translation for this web page.
Refereed articles
- N. Roy, M. Karow, S. Bora, G. Armentia.
Approximation of
pseudospectra of block triangular matrices.
To appear in Linear Algebra
Appl.
Download
- N. Gilles, M. Karow, P. Sharma. Approximating the nearest stable discrete-time system. Linear Algebra Appl. 573:37-53, 2019. Download [1]
- S. Bora, M. Karow, C. Mehl and P. Sharma. Structured eigenvalue backward errors of matrix pencils and polynomials with palindromic structures. SIAM J. Matrix Anal. Appl. 36:393-416, 2015. Download [2]
- M. Karow and E. Mengi. Matrix polynomials with specified eigenvalues. Linear Algebra Appl. 466:457-482, 2015. Download [3]
- S. Bora, M. Karow, C. Mehl and P. Sharma. Structured eigenvalue backward errors of matrix pencils and polynomials with Hermitian and related structures. SIAM J. Matrix Anal. Appl. 2014 35(2):453-475, 2014. Download [4]
- M. Karow, D. Kressner, and E. Mengi. Nonlinear eigenvalue problems with specified eigenvalues. SIAM J. Matrix Anal. Appl. 35(3):819-834, 2014. Download [5]
- M. Karow, and D. Kressner. On a
perturbation bound for invariant subspaces of matrices.
SIAM. J. Matrix Anal. Appl. 35(2):599-618, 2014. Download [6] - M. Karow. μ-values and spectral value sets for linear perturbation classes defined by a scalar product. SIAM. J. Matrix Anal. & Appl. 32, 845-865, 2011. Download [7]
- M. Karow. Structured pseudospectra for small perturbations. SIAM. J. Matrix Anal. & Appl. 32(4):1383-1398, 2011. Download [8]
- M. Karow. Structured pseudospectra and the condition of a nonderogatory eigenvalue. SIAM. J. Matrix Anal. & Appl. 31:2860-2881, 2010. Download [9]
- A. Alam, S. Bora, M. Karow, V. Mehrmann, J. Moro. Perturbation theory for Hamiltonian matrices and the distance to bounded realness. SIAM. J. Matrix Anal. & Appl. 32, 484 -514, 2011. Download [10]
- M. Karow, E. Kokiopoulou, and D. Kressner. On the computation of structured singular values and pseudospectra. Systems Control Lett., 59(2):122-129, 2010. Software package 'Structured Eigtool': information and download [11]
- M. Karow, D. Kressner. On the structured distance to uncontrollability. Systems & Control Letters, 58(2):128-132, 2009. Download [12]
- M. Karow, D. Hinrichsen, A. J. Pritchard. Interconnected systems with uncertain couplings: explicit formulae for μ-values, spectral value sets and stability radii. SIAM J. Control Opt. 45(3):856-884, 2006. Download [13]
- M. Karow, D. Kressner, F. Tisseur. Structured Eigenvalue Condition Numbers. SIAM J. Matrix Anal. Appl. 28(4):1052-1068, 2006. Download [14]
- M. Karow. Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15:143-153, 2006. Download [15]
- E. Gutkin, E. Jonckheere, M. Karow. Convexity of the joint numerical range: Topological and differential geometric viewpoints. Linear Algebra Appl., 376: 143-171, 2004. Download [16]
- M. Karow. Self-adjoint operators and pairs of Hermitian forms over the quaternions. Linear Algebra Appl. 299, No.1-3, 101-117, 1999. Download [17]
- M. Karow. On real spectral value sets of real normal matrices. ZAMM, Z. Angew. Math. Mech. 79, Suppl. 3, 909-910, 1999. pdf [18]
Other Publications
- Olga Holtz, Michael Karow. Real and Complex Operator Norms. arXiv:math/0512608v1 [19], pdf [20]
- Michael Karow, Diederich Hinrichsen, Anthony J. Pritchard. Stablility radii and spectral value sets for generalized Gershgorin perturbations. Proceedings CDC06, pp. 5760-5765. San Diego, Dec. 2006. pdf [21]
- Anna Jahnke, Felix Ziegler, Michael Karow. Re-evaluation of the Honigman-process: thermodynamical heat store for the supply of electricity and refrigeration. Heat powered cycles conference. TU Berlin, September 2009. pdf [22]
Talks
- Michael Karow. Eigenvalue condition numbers for structured perturbations. An approach via spectral value sets and μ-functions. Workshop on structured perturbations and distance problems , Bedlewo, March 2007. pdf [23]
- Michael Karow. Structured pseudospectra and the condition of a nonderogatory eigenvalue. ILAS07, Shanghai, July 2007. pdf [24]
Theses
- Michael Karow. Hermitesch-symmetrische Ungleichungen und der reelle Stabilitätsradius. Diploma Thesis, Universität Bremen, 1997.
- Michael Karow. Geometry of spectral value sets. PhD Thesis, Universität Bremen, 2003. ps-file [25]
ii/S0024379519301156
002437951400679X
S016769110800162X
S0024379503006797
S0024379599001652
s_karow/real_normal_svs.pdf
s_karow/norms.pdf
s_karow/cdc06.pdf
s_karow/honigmann_prozess.pdf
s_karow/karow_bedlewo07.pdf
s_karow/karow_ilas07.pdf
s_karow/diss_karow.ps
Zusatzinformationen / Extras
Quick Access:
Schnellnavigation zur Seite über Nummerneingabe
Auxiliary Functions
This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.
Copyright TU Berlin 2008