direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Dr. Olivier Sète - Publications

Recent Publications und Preprints

  • Olivier Sète and Jan Zur, The transport of images method: computing all zeros of harmonic mappings by continuation, 2020, accepted for publication in IMA J. Numer. Anal. arXiv [1]
  • Sergei Kalmykov, Béla Nagy, and Olivier Sète, Construction of open up mappings with rational functions and related questions, 2019, submitted. arXiv [2]
  • Luis García Ramos, Olivier Sète, and Reinhard Nabben, Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials, 2019, submitted.
  • Olivier Sète and Jan Zur, Number and location of pre-images under harmonic mappings in the plane, accepted for publication in Ann. Acad. Sci. Fenn. Math., 2020. arXiv [3]

Refereed Journal Publications

  • Robert Luce and Olivier Sète, The index of singular zeros of harmonic mappings of anti-analytic degree one [4], Complex Var. Elliptic Equ., 66:1 (2021), 1-21. Available as Oberwolfach Preprint OWP 2017-03 [5]. arXiv [6]
  • Olivier Sète and Jan Zur, A Newton method for harmonic mappings in the plane [7], IMA J. Numer. Anal. 40(4) (2020), pp. 2777-2801. Free access [8]. arXiv [9]
  • Yuji Nakatsukasa, Olivier Sète, and Lloyd N. Trefethen, The AAA algorithm for rational approximation [10], SIAM J. Sci. Comput. 40-3 (2018), pp. A1494-A1522. arXiv [11]
  • Jörg Liesen, Olivier Sète, and Mohamed M.S. Nasser, Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets [12], Comput. Methods Funct. Theory 17(4) (2017), 689-713. arXiv [13]
  • Olivier Sète and Jörg Liesen, Properties and examples of Faber--Walsh polynomials [14], Comput. Methods Funct. Theory 17(1) (2017), 151-177. arXiv [15]
  • Mohamed M.S. Nasser, Jörg Liesen, and Olivier Sète, Numerical computation of the conformal map onto lemniscatic domains [16], Comput. Methods Funct. Theory 16(4) (2016), 609-635. arXiv [17]
  • Olivier Sète and Jörg Liesen, On conformal maps from multiply connected domains onto lemniscatic domains [18], Electron. Trans. Numer. Anal., vol. 45, pp. 1-15, 2016. arXiv [19]
  • Robert Luce, Olivier Sète, and Jörg Liesen, A Note on the Maximum Number of Zeros of $r(z)-bar{z}$ [20], Comput. Methods Funct. Theory 15(3) (2015), 439-448. arXiv [21]
  • Olivier Sète, Robert Luce, and Jörg Liesen, Creating images by adding masses to gravitational point lenses [22] (Editor's Choice), Gen. Relativ. Gravit., 47:42, 2015. arXiv [23]
  • Olivier Sète, Robert Luce, and Jörg Liesen, Perturbing rational harmonic functions by poles [24], Comput. Methods Funct. Theory 15(1) (2015), 9-35. arXiv [25]
  • Robert Luce, Olivier Sète, and Jörg Liesen, Sharp parameter bounds for certain maximal point lenses [26] (Editor's Choice), Gen. Relativ. Gravit., 46:1736, 2014. arXiv [27]

Further Publications

  • Jussi Behrndt and Olivier Sète, On the nonreal eigenvalues of elliptic differential operators with indefinite weights on Lipschitz domains, Proc. Appl. Math. Mech. 9 (2009), 667-668; pdf [28].

Schriften / Thesis

  • Olivier Sète, On Interpolation and Approximation Problems in Numerical Linear Algebra [29], Doktorarbeit (PhD Thesis), Technische Universität Berlin, 2016.
  • Olivier Sète, Ein Modell für unendlichdimensionale singuläre Störungen von elliptischen Differentialoperatoren, Diplomarbeit (Diploma Thesis), Technische Universität Berlin, 2009.
------ Links: ------

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008