direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publications

The PDF documents on this website are pre-/postprint versions of the corresponding original articles. It is advised to prefer the versions that are linked under the associated DOI. The use and copyrights rest with the corresponding publisher.

Submitted Articles

  • Z. Tomljanović and M. Voigt. Semi-active H damping optimization by adaptive interpolation. April 2019. Submitted for publication.
  • S. K. Baydoun, M. Voigt, C. Jelich, and S. Marburg. A greedy reduced basis scheme for multi-frequency solution of structural acoustic systems. April 2019. Revision submitted for publication.

Refereed Journal Articles

  • T. Reis and M. Voigt. Linear-quadratic optimal control of differential-algebraic systems: The infinite time horizon problem with zero terminal state [1]. SIAM J. Control Optim., 2019. Accepted for publication.
  • T. Reis and M. Voigt. Inner-outer factorization for differential-algebraic systems [2]. Math. Control Signals Systems, 30(3):15:1-15:19, 2018. DOI: 10.1007/s00498-018-0221-5 [3].
  • D. Bankmann and M. Voigt. On linear-quadratic optimal control of implicit difference equations [4]. IMA J. Math. Control Inform., 2018. DOI: 10.1093/imamci/dny007 [5].
  • P. Benner, R. Lowe, and M. Voigt. L-norm computation for large-scale descriptor systems using structured iterative eigensolvers [6]. Numer. Algebra Control Optim., 8(1):119-133, 2018. DOI: 10.3934/naco.2018007 [7].
  • N. Aliyev, P. Benner, E. Mengi, P. Schwerdtner, and M. Voigt. Large-scale computation of L-norms by a greedy subspace method [8]. SIAM J. Matrix Anal. Appl., 38(4):1496-1516, 2017. DOI: 10.1137/16M1086200.
  • P. Benner, V. Sima, and M. Voigt. Algorithm 961: Fortran 77 subroutines for the solution of skew-Hamiltonian/Hamiltonian eigenproblems [9]. ACM Trans. Math. Software, 42(3):24:1-24:26, 2016. DOI: 10.1145/2818313.
  • T. Reis and M. Voigt. The Kalman-Yakubovich-Popov inequality for differential-algebraic systems: Existence of nonpositive solutions [10]. Systems Control Lett., 86:1-8, 2015. DOI: 10.1016/j.sysconle.2015.09.003.
  • T. Reis, O. Rendel, and M. Voigt. The Kalman-Yakubovich-Popov inequality for differential-algebraic systems [11]. Linear Algebra Appl., 485:153-193, 2015. DOI: 10.1016/j.laa.2015.06.021.
  • P. Benner and M. Voigt. A structured pseudospectral method for H-norm computation of large-scale descriptor systems [12]. Math. Control Signals Systems, 26(2):303-338, 2014. DOI: 10.1007/s00498-013-0121-7.
  • P. Benner and M. Voigt. Spectral characterization and enforcement of negative imaginariness for descriptor systems [13]. Linear Algebra Appl., 439(4):1104-1129, 2013. DOI: 10.1016/j.laa.2012.12.044.
  • P. Benner, V. Sima, and M. Voigt. L-norm computation for continuous-time descriptor systems using structured matrix pencils [14]. IEEE Trans. Automat. Control, 57(1):233-238, 2012. DOI: 10.1109/TAC.2011.2161833.

Book Chapters

  • P. Benner, P. Losse, V. Mehrmann, and M. Voigt. Numerical linear algebra methods for linear differential-algebraic equations [15]. In A. Ilchmann and T. Reis, editors, Surveys in Differential-Algebraic Equations III, Differ.-Algebr. Equ. Forum, chapter 3, pages 117-175, Springer-Verlag, Cham, Switzerland, 2015. DOI: 10.1007/978-3-319-22428-2_3.
  • D. Kressner and M. Voigt. Distance problems for linear dynamical systems [16]. In P. Benner, M. Bollhöfer, C. Mehl, D. Kressner, and T. Stykel, editors, Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory - Festschrift in Honor of Volker Mehrmann, chapter 20, pages 559-583, Springer-Verlag, Cham, Switzerland, 2015. DOI: 10.1007/978-3-319-15260-8_20.

Refereed Articles in Conference Proceedings

  • P. Schwerdtner and M. Voigt. Computation of the L-norm using rational interpolation [17]. IFAC-PapersOnLine, 51(25):84-89, 2018. Joint 9th IFAC Symposium on Robust Control Design and 2nd IFAC Workshop on Linear Parameter Varying Systems, Florianópolis, Brazil, 2018. DOI: 10.1016/j.ifacol.2018.11.086.
  • J. Saak and M. Voigt. Model reduction of constrained mechanical systems in M-M.E.S.S. [18]. IFAC-PapersOnLine, 51(2):661-666, 2018. 9th Vienna International Conference on Mathematical Modelling, Vienna, Austria, 2018. DOI: 10.1016/j.ifacol.2018.03.112 [19].
  • N. Bajcinca and M. Voigt. Spectral conditions for symmetric positive real and negative imaginary systems [20]. In Proceedings of the 19th European Control Conference, pages 809-814, Zürich, Switzerland, 2013. ISBN: 978-3-033-03962-9.
  • P. Benner and M. Voigt. Numerical computation of structured complex stability radii of large-scale matrices and pencils [21]. In Proceedings of the 51th IEEE Conference on Decision and Control, pages 6560-6565, Maui, Hawaii, USA, 2012. DOI: 10.1109/CDC.2012.6426906.
  • T. Reis and M. Voigt. Linear-quadratic infinite time horizon optimal control for differential-algebraic equations - a new algebraic criterion [22]. In Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems, Melbourne, Australia, 2012.
  • P. Benner, V. Sima, and M. Voigt. Robust and efficient algorithms for L-norm computation for descriptor systems [23]. IFAC Proceedings Volumes, 45(13):195-200, 2012. 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark, 2012. DOI: 10.3182/20120620-3-DK-2025.00114.

Miscellaneous Articles in Conference Proceedings

  • S. K. Baydoun, L. Li, M. Voigt, and S. Marburg. A low-rank iteration scheme for multi-frequency acoustic problems [24]. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 258(6):1387-1396, 2018.
  • N. Aliyev, P. Benner, E. Mengi, P. Schwerdtner, and M. Voigt. A greedy subspace method for computing the L-norm [25]. PAMM. Proc. Appl. Math. Mech., 17(1):751-752, 2017. DOI: 10.1002/pamm.201710343.
  • T. Reis and M. Voigt. Inner-outer factorization via Lur’e equations [26]. PAMM. Proc. Appl. Math. Mech., 16(1):829-830, 2016. DOI: 10.1002/pamm.201610403.
  • T. Reis and M. Voigt. The Kalman-Yakubovich-Popov inequality for descriptor systems [27]. PAMM. Proc. Appl. Math. Mech., 15(1):645-646, 2015. DOI: 10.1002/pamm.201510312.
  • T. Reis and M. Voigt. Solution of descriptor Lur’e equations via even matrix pencils [28]. PAMM. Proc. Appl. Math. Mech., 14(1):925-926, 2014. DOI: 10.1002/pamm.201410443.
  • T. Reis and M. Voigt. The dissipation inequality for differential-algebraic systems [29]. PAMM. Proc. Appl. Math. Mech., 14(1):11-14, 2014. DOI: 10.1002/pamm.201410004.
  • P. Benner, R. Lowe, and M. Voigt. Computation of the H-norm for large-scale systems [30]. Oberwolfach Rep., 10(4):3289-3291, 2013. DOI: 10.4171/OWR/2013/56.
  • J. Saak, M. M. Uddin, and M. Voigt. Modellreduktion für strukturierte Index-3-Systeme. In O. Sawodny and J. Adamy, editors, Tagungsband des GMA-Fachausschusses 1.30 „Modellbildung, Identifikation und Simulation in der Automatisierungstechnik“, pages 180-190. Technische Universität Darmstadt, Institut für Automatisierungstechnik und Mechatronik, 2013.
  • M. Voigt. Computation of the complex dissipativity radius. In O. Sawodny and J. Adamy, editors, Tagungsband des GMA-Fachausschusses 1.30 „Modellbildung, Identifikation und Simulation in der Automatisierungstechnik“, pages 10-19. Technische Universität Darmstadt, Institut für Automatisierungstechnik und Mechatronik, 2013.
  • P. Benner and M. Voigt. H-norm computation for large and sparse descriptor systems [31]. PAMM. Proc. Appl. Math. Mech., 12(1):797-800, 2012. DOI: 10.1002/pamm.201210383.
  • P. Benner and M. Voigt. L-norm computation for discrete-time descriptor systems [32]. In O. Sawodny and J. Adamy, editors, Tagungsband des GMA-Fachausschusses 1.30 „Modellbildung, Identifikation und Simulation in der Automatisierungstechnik“, pages 228-240. Technische Universität Darmstadt, Institut für Automatisierungstechnik und Mechatronik, 2011.
  • P. Benner and M. Voigt. On the computation of particular eigenvectors of Hamiltonian matrix pencils [33]. PAMM. Proc. Appl. Math. Mech., 11(1):753-754, 2011. DOI: 10.1002/pamm.201110366.

Manuals

  • P. Benner, V. Sima, and M. Voigt. SHHEIG Users’ Guide [34]. ACM, 2016.

Technical Reports

  • P. Jiang and M. Voigt. MB04BV – A FORTRAN 77 subroutine to compute the eigenvectors associated to the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils [35]. SLICOT Working Note 2013-3, NICONET e. V., September 2013.

Theses

  • M. Voigt. On Linear-Quadratic Optimal Control and Robustness of Differential-Algebraic Systems [36]. Logos-Verlag, Berlin, 2015. ISBN: 978-3-8325-4118-7. Also as Dissertation, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2015.
  • M. Voigt. L-Norm Computation for Descriptor Systems [37]. Diplomarbeit, Technische Universität Chemnitz, Fakultät für Mathematik, July 2010.
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008