direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Eingereichte Arbeiten

A framework for deflated and augmented Krylov subspace methods, jointly with A. Gaul, M. Gutknecht, and J. Liesen
Multilevel methods, C.B.S. constants and spectral equivalence, jointly with F. Goßler
Deflation and Projection Methods applied to positive semidefinite systems, jointly with E. Ludwig, and J. Tang

Publikationen

vor >> [4]

Andriyevskyy, Volodymyr and Eiermann, Michael and Freund, Roland and Li, Jing and Mehrmann, Volker and Nabben, Reinhard and Reichel, Lothar and Szyld, Daniel B. (2009/10). Special volume dedicated to Richard S. Varga on the occasion of his eightieth birthday [8]. Electron. Trans. Numer. Anal., vii.


Tang, J. M. and MacLachlan, S. P. and Nabben, R. and Vuik, C. (2009/10). A comparison of two-level preconditioners based on multigrid and deflation [9]. SIAM J. Matrix Anal. Appl., 1715–1739.

Link zur Publikation [10]

Erlangga, Yogi A. and Nabben, Reinhard (2009). Algebraic multilevel Krylov methods [11]. SIAM J. Sci. Comput., 3417–3437.

Link zur Publikation [12]

Tang, J. M. and Nabben, R. and Vuik, C. and Erlangga, Y. A. (2009). Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods [13]. J. Sci. Comput., 340–370.

Link zur Publikation [14]

Luce, R. and Nabben, R. and Duintjer Tebbens, J. and Groetschel, M. and Koch, T. and Liesen, J. and Schenk, O. (2009). On the Factorization of Simplex Basis Matrices [15].


Erlangga, Yogi A. and Nabben, Reinhard (2008). On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian [16]. Electron. Trans. Numer. Anal., 403–424.


Ernst, Oliver and Greenbaum, Anne and Gutknecht, Martin and Kressner, Daniel and Nabben, Reinhard and Strakovs, Zdenvek (2008). Special volume on Computational Methods with Applications [17]. Electron. Trans. Numer. Anal., xii–xiii.


Mense, Christian and Nabben, Reinhard (2008). On algebraic multilevel methods for non-symmetric systems–-convergence results [18]. Electron. Trans. Numer. Anal., 323–345.


Mense, C. and Nabben, R. (2008). On algebraic multi-level methods for non-symmetric systems–-comparison results [19]. Linear Algebra Appl., 2567–2588.

Link zur Publikation [20]

Loisel, Sébastien and Nabben, Reinhard and Szyld, Daniel B. (2008). On hybrid multigrid-Schwarz algorithms [21]. J. Sci. Comput., 165–175.

Link zur Publikation [22]

Frommer, Andreas and Nabben, Reinhard and Szyld, Daniel B. (2008). Convergence of stationary iterative methods for Hermitian semidefinite linear systems and applications to Schwarz methods [23]. SIAM J. Matrix Anal. Appl., 925–938.

Link zur Publikation [24]

Erlangga, Yogi A. and Nabben, Reinhard (2008). Deflation and balancing preconditioners for Krylov subspace methods applied to nonsymmetric matrices [25]. SIAM J. Matrix Anal. Appl., 684–699.

Link zur Publikation [26]

Nabben, R. and Vuik, C. (2008). A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners [27]. Numer. Linear Algebra Appl., 355–372.

Link zur Publikation [28]

Erlangga, Yogi A. and Nabben, Reinhard (2008). Multilevel projection-based nested Krylov iteration for boundary value problems [29]. SIAM J. Sci. Comput., 1572–1595.

Link zur Publikation [30]

Mehrmann, Volker and Nabben, Reinhard and Virnik, Elena (2008). Generalisation of the Perron-Frobenius theory to matrix pencils [31]. Linear Algebra Appl., 20–38.

Link zur Publikation [32]

vor >> [36]

Suchfunktion

Suche nach Publikationen




weitere Publikation hinzufügen

Upload BibTeX

------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008