Page Content
Asymptotic Analysis
Lecture (2 SWS) with Tutorial (1 SWS) in summer term 2016 at TU Berlin
Link to university calendar [1]
Time | Room | Lecturer | |
---|---|---|---|
Lectures | Thu, 14.15 -
15.45 | MA 542 | Dr. Kersten Schmidt
[2] |
Exercises | Wed, 14.15 -
15.45 | MA 376 | Dr. Anastasia
Thöns-Zueva [3] |
Content
In
mathematical models in natural sciences as well as in technological
devices very different time or length scales are often present. The
presence of the different scales can then be represented by a small
parameter (denoted by ε for example). The parameter has often a
singular character and cannot simply be set to zero. The solution of
the model with ε = 0 differs then much from the solution with small,
but non-vanishing parameter and the application of standard methods
leads often to utterly wrong results.
To study and solve
such so called singularly perturbed problems the asymptotic analysis
and asymptotic expansions can be helpful. The original problem is
replaced by a series of problems, which are much easier to treat, and
whose solutions give (in sum) an approximation to the original
problem. There exist special analytical methods like the method of
matched asymptotics or the multiscale method and specially adapted
numerical methods.
- Limit solution (left) for a thin conducting sheet (eddy current model) and corrector functions of first (middle) and second order (right).
[4]
- © Kersten Schmidt
Topics:
- Asymptotic sequences und series'
- Asymptotics of integrals (Laplace integrals, Watson lemma, method of startionary phases, steepest descent methods)
- Asymptotics of (ordinary) differential equations (regular asymptotic expansions, singularly perturbed differential equations, method of matched asymptotic expansions, multiscale method, WKB method)
References
- H.J.J. Roessel and J.C. Bowman,
Asymptotic Methods, lecture notes, University of Alberta,
Edmonton, Canada, 2012.
http://www.math.ualberta.ca/~bowman/m538/m538.pdf [5] - C. Bender and S. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer, 1999
- J. A. Murdock, Perturbations: Theory and Methods, SIAM, 1987.
- W. Eckhaus, Asymptotic Analysis of Singular Perturbations, North-Holland, 1979.
- J. Kevorkian und J.D. Cole, Multiple Scale and Singular Perturbation Methods, Springer, Applied Mathematical Sciences 114, 1996.
Tutorials
The solutions can be handed in in paper form or as PDF document attached to an e-mail to Anastasia Thöns-Zueva.
- Series 1 [6], to be handed in by May 12th, 2016, 2.15 a.m.
- Series 2 [7], to be handed in by May 26th, 2016, 2.15 a.m.
- Series 3 [8], to be handed in by June 9th, 2016, 2.15 a.m.
- Series 4 [9], to be handed in by June 23d, 2016, 2.15 a.m.
- Series 5 [10], to be handed in by July 14th, 2016, 2.15 a.m.
Audience
Students at bachelor, master level or diploma students in mathematics (incl. Techno-, Wirtschaftsmathematik and Scientific Computing), as well as doctoral students (incl. BMS). Students in physics and engineering disciplines with interest in theory are welcome.
Requirements
Analysis I-II, Linear Algebra.
Helpful: Basic knowledge of differential equations, Mathematical Modelling
s.servlet.RequestDispatcherServlet?state=verpublish&
;status=init&vmfile=no&publishid=180975&mod
uleCall=webInfo&publishConfFile=webInfo&publish
SubDir=veranstaltung
diff/junior_research_group_dr_kersten_schmidt/nachwuchs
gruppe_dr_kersten_schmidt/staff/schmidt/parameter/en/fo
nt4/maxhilfe/
iff/nachwuchsgruppe_dr_kersten_schmidt/nachwuchsgruppe_
dr_kersten_schmidt/mitarbeitende/zueva/
dt/Vorlesungen/AsymptoticAnalysis1_WS2013/AsympEllipse_
c0_1.png
idt/Vorlesungen/AsymptoticAnalysis1_SS2016/serie1.pdf
idt/Vorlesungen/AsymptoticAnalysis1_SS2016/serie2.pdf
idt/Vorlesungen/AsymptoticAnalysis1_SS2016/serie3.pdf
idt/Vorlesungen/AsymptoticAnalysis1_SS2016/serie4.pdf
midt/Vorlesungen/AsymptoticAnalysis1_SS2016/serie5.pdf