direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

Publikationen

Preprints

Thöns-Zueva, A., Schmidt, K. and Semin, A. Multiharmonic analysis for nonlinear acoustics with different scales. arXiv:1701.02097, TU Berlin, 2017. [PDF], [BibTeX]


Schmidt, K. and Thöns-Zueva, A. Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases. Preprint series of the Institute of Mathematics, 6-2014, Technische Universität Berlin, 2014. [PDF], [BibTeX]


To top

Reviewed Articles

Dirichlet-to-Neumann transparent boundary conditions for photonic crystal wave-guides
Citation key Klindworth.Schmidt:2014
Author D. Klindworth and K. Schmidt
Pages 217–220
Year 2014
ISSN 0018-9464
DOI 10.1109/TMAG.2013.2285412
Journal IEEE Trans. Magn.
Volume 50
Month Feb
Abstract In this work we present a complete algorithm for the exact computation of the guided mode band structure in photonic crystal (PhC) wave-guides. In contrast to the supercell method, the used approach does not introduce any modelling error and is hence independent of the confinement of the modes. The approach is based on Dirichlet-to-Neumann (DtN) transparent boundary conditions that yield a nonlinear eigenvalue problem. For the solution of this nonlinear eigenvalue problem we present a direct technique using Chebyshev interpolation that requires a band gap calculation of the PhC in advance. For this band gap calculation - we introduce as a very efficient tool - a Taylor expansion of the PhC band structure. We show that our algorithm - like the supercell method ?- converges exponentially, however, its computational costs - in comparison to the supercell method - only increase moderately since the size of the matrix to be inverted remains constant.
Link to publication Download Bibtex entry

To top

Technical Reports

Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF], [BibTeX]


Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF], [BibTeX]


Semin, A. Numerical resolution of the wave equation on a network of slots. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF], [BibTeX]


Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF], [BibTeX]


To top

Proceedings

Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX]


Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX]


Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX]


Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX]


To top

Chapters in Books

Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI], [BibTeX]


To top

PhD Theses

Klindworth, D. On the numerical computation of photonic crystal waveguide band structures. Technische Universität Berlin, 2015. [PDF], [BibTeX]


Semin, A. Propagation d'ondes dans des jonctions de fentes minces. Université de Paris-Sud 11, Nov 2010. [BibTeX]



To top

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Adresse

TU Berlin
Institute für Mathematik
sec. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379