direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Einstein Project Dr. Adrien Semin

Asymptotic analysis of finite periodic thin layers ending with corner singularities
October 2012 - December 2015
Dr. Kersten Schmidt
Dr. Adrien Semin
Bérangère Delourme (Université Paris 13)
Robert Gruhlke (Technische Universität Berlin)
It is known in the engineering that materials with small multiple co-axial wires, or multi-perforated materials helps to reduce the sound propagating inside the media containing. The difficulty lies in a high density of small holes which makes a direct numerical simulation impossible because the equations to be solved would be too large. However the small holes have a significant influence on the outgoing noise. In this project we study a thin periodic multi-perforated layer ending with two corners singularities with techniques of asymptotic expansion.


Semin, A., Delourme, B. and Schmidt, K. On the homogenization of the Helmholtz problem with thin perforated walls of finite length. Mathematical Modelling and Numerical Analysis, Submitted. [BibTeX]

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

This site uses Matomo for anonymized webanalysis. Visit Data Privacy for more information and opt-out options.


TU Berlin
Institute für Mathematik
sec. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379