direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments



Thöns-Zueva, A., Schmidt, K. and Semin, A. Multiharmonic analysis for nonlinear acoustics with different scales. arXiv:1701.02097, TU Berlin, 2017. [PDF], [BibTeX]

Schmidt, K. and Thöns-Zueva, A. Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases. Preprint series of the Institute of Mathematics, 6-2014, Technische Universität Berlin, 2014. [PDF], [BibTeX]

Nach oben

Reviewed Articles

A multiscale hp-FEM for 2D photonic crystal bands
Zitatschlüssel Brandsmeier.Schmidt.Schwab:2011
Autor H. Brandsmeier and K. Schmidt and Ch. Schwab
Seiten 349–374
Jahr 2011
DOI 10.1016/j.jcp.2010.09.018
Journal J. Comput. Phys.
Jahrgang 230
Nummer 2
Monat Jan
Zusammenfassung A Multiscale generalized $hp$-Finite Element Method (MSFEM) for time harmonic wave propagation in bands of locally periodic media of large, but finite extent, e.g., photonic crystal (PhC) bands, is presented. The method distinguishes itself by its size robustness, i.e., to achieve a prescribed error its computational effort does not depend on the number of periods. The proposed method shows this property for general incident fields, including plane waves incident at a certain angle to the infinite crystal surface, and at frequencies in and outside of the bandgap of the PhC. The proposed MSFEM is based on a precomputed problem adapted multiscale basis. This basis incorporates a set of complex Bloch modes, the eigenfunctions of the infinite PhC, which are modulated by macroscopic piecewise polynomials on a macroscopic FE mesh. The multiscale basis is shown to be efficient for finite PhC bands of any size, provided that boundary effects are resolved with a simple macroscopic boundary layer mesh. The MSFEM, constructed by combing the multiscale basis inside the crystal with some exterior discretisation, is a special case of the Generalised Finite Element Method (g-FEM). For the rapid evaluation of the matrix entries we introduce a size robust algorithm for integrals of quasi-periodic micro functions and polynomial macro functions. Size robustness of the present MSFEM in both, the number of basis functions and the computation time, is verified in extensive numerical experiments.
Link zur Publikation Download Bibtex Eintrag

Nach oben

Technical Reports

Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF], [BibTeX]

Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF], [BibTeX]

Semin, A. Numerical resolution of the wave equation on a network of slots. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF], [BibTeX]

Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF], [BibTeX]

Nach oben


Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX]

Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX]

Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX]

Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX]

Nach oben

Chapters in Books

Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI], [BibTeX]

Nach oben

PhD Theses

Klindworth, D. On the numerical computation of photonic crystal waveguide band structures. Technische Universität Berlin, 2015. [PDF], [BibTeX]

Semin, A. Propagation d'ondes dans des jonctions de fentes minces. Université de Paris-Sud 11, Nov 2010. [BibTeX]

Nach oben

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.


TU Berlin
Institut für Mathematik
Sekr. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379