direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

Preprints

Thöns-Zueva, A., Schmidt, K. and Semin, A. Multiharmonic analysis for nonlinear acoustics with different scales. arXiv:1701.02097, TU Berlin, 2017. [PDF], [BibTeX]


Schmidt, K. and Thöns-Zueva, A. Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases. Preprint series of the Institute of Mathematics, 6-2014, Technische Universität Berlin, 2014. [PDF], [BibTeX]


Nach oben

Reviewed Articles

Computations of lossy Bloch waves in two-dimensional photonic crystals
Zitatschlüssel Engstrom.Hafner.Schmidt:2009
Autor Ch. Engström and Ch. Hafner and K. Schmidt
Seiten 775–783
Jahr 2009
Journal J. Comput. Theor. Nanosci.
Jahrgang 6
Monat Mar
Zusammenfassung In this article we compute lossy Bloch waves in two-dimensional photonic crystals with disper- sion and material loss. For given frequencies these waves are determined from non-linear eigen- value problems in the wave vector. We applied two numerical methods to a demanding test case, a photonic crystal with embedded quantum dots that exhibits very strong and anamolous disper- sion. The first method is based on the formulation with periodic boundary conditions leading to a quadratic eigenvalue problem. We discretize this problem by the finite element method (FEM), first of quadratic order and, second, of higher orders using curved cells (p-FEM). Second, we use the multiple-multipole method (MMP) with artificial sources and compute extrema in the field response determining the eigenvalues. Both MMP and FEM provide robust solutions for the inves- tigated dispersive and lossy photonic crystal, and can approximate the Bloch waves to a high accuracy. Moreover, the MMP method and p-FEM show low computational effort for very accurate solutions.
Link zur Publikation Download Bibtex Eintrag

Nach oben

Technical Reports

Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF], [BibTeX]


Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF], [BibTeX]


Semin, A. Numerical resolution of the wave equation on a network of slots. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF], [BibTeX]


Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF], [BibTeX]


Nach oben

Proceedings

Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX]


Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX]


Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX]


Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX]


Nach oben

Chapters in Books

Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI], [BibTeX]


Nach oben

PhD Theses

Klindworth, D. On the numerical computation of photonic crystal waveguide band structures. Technische Universität Berlin, 2015. [PDF], [BibTeX]


Semin, A. Propagation d'ondes dans des jonctions de fentes minces. Université de Paris-Sud 11, Nov 2010. [BibTeX]



Nach oben

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.

Adresse

TU Berlin
Institut für Mathematik
Sekr. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379