direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments


  • Preprints
  • Reviewed Articles
  • Technical Reports
  • Proceedings
  • Chapters in Books
  • PhD Theses


Thöns-Zueva, A., Schmidt, K. and Semin, A. Multiharmonic analysis for nonlinear acoustics with different scales [1]. arXiv:1701.02097, TU Berlin, 2017. [PDF [2]], [BibTeX [3]]

Schmidt, K. and Thöns-Zueva, A. Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases [4]. Preprint series of the Institute of Mathematics, 6-2014, Technische Universität Berlin, 2014. [PDF [5]], [BibTeX [6]]

Nach oben

Reviewed Articles

Dirichlet-to-Neumann transparent boundary conditions for photonic crystal wave-guides
Zitatschlüssel Klindworth.Schmidt:2014
Autor D. Klindworth and K. Schmidt
Seiten 217–220
Jahr 2014
ISSN 0018-9464
DOI 10.1109/TMAG.2013.2285412
Journal IEEE Trans. Magn.
Jahrgang 50
Monat Feb
Zusammenfassung In this work we present a complete algorithm for the exact computation of the guided mode band structure in photonic crystal (PhC) wave-guides. In contrast to the supercell method, the used approach does not introduce any modelling error and is hence independent of the confinement of the modes. The approach is based on Dirichlet-to-Neumann (DtN) transparent boundary conditions that yield a nonlinear eigenvalue problem. For the solution of this nonlinear eigenvalue problem we present a direct technique using Chebyshev interpolation that requires a band gap calculation of the PhC in advance. For this band gap calculation - we introduce as a very efficient tool - a Taylor expansion of the PhC band structure. We show that our algorithm - like the supercell method ?- converges exponentially, however, its computational costs - in comparison to the supercell method - only increase moderately since the size of the matrix to be inverted remains constant.
Link zur Publikation [7] Download Bibtex Eintrag [8]

Nach oben

Technical Reports

Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets [10]. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF [11]], [BibTeX [12]]

Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots [13]. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF [14]], [BibTeX [15]]

Semin, A. Numerical resolution of the wave equation on a network of slots [16]. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF [17]], [BibTeX [18]]

Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots [19]. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF [20]], [BibTeX [21]]

Nach oben


Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets [22]. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX [23]]

Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks [24]. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX [25]]

Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots [26]. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX [27]]

Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets [28]. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX [29]]

Nach oben

Chapters in Books

Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations [30]. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI [31]], [BibTeX [32]]

Nach oben

PhD Theses

Klindworth, D. On the numerical computation of photonic crystal waveguide band structures [33]. Technische Universität Berlin, 2015. [PDF [34]], [BibTeX [35]]

Semin, A. Propagation d'ondes dans des jonctions de fentes minces [36]. Université de Paris-Sud 11, Nov 2010. [BibTeX [37]]

Schmidt, K. High-order numerical modeling of highly conductive thin sheets [38]. ETH Zurich, Jul 2008. [PDF [39]], [BibTeX [40]]

Nach oben


TU Berlin
Institut für Mathematik
Sekr. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379

  • Campusplan [41]
  • Campusplan (pdf) [42]
  • Anfahrt (Google Maps) [43]





  • C++ Bibliothek "Concepts" [47]
------ Links: ------

Zusatzinformationen / Extras


Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008