direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Publikationen

  • Preprints
  • Reviewed Articles
  • Technical Reports
  • Proceedings
  • Chapters in Books
  • PhD Theses

Preprints

Multiharmonic analysis for nonlinear acoustics with different scales
Zitatschlüssel 2017arXiv1701.02097
Autor A. Thöns-Zueva and K. Schmidt and A. Semin
Jahr 2017
Journal arXiv:1701.02097
Institution TU Berlin
Link zur Publikation [1] Download Bibtex Eintrag [2]

Nach oben

Reviewed Articles

vor >> [6]

2017

Schmidt, K. and Hiptmair, R. Asymptotic expansion techniques for singularly perturbed boundary integral equations [7]. Numer. Math., 137(2): 397–415, 2017. [DOI [8]], [BibTeX [9]]


Semin, A., Delourme, B. and Schmidt, K. On the homogenization of the Helmholtz problem with thin perforated walls of finite length [10]. ESAIM Math. Model. Numer. Anal., 2017. [BibTeX [11]]


Drescher, L., Heumann, H. and Schmidt, K. A High Order Galerkin Method for Integrals over Contour Lines with an Application to Plasma Physics [12]. SIAM Numer. Math., 2017. [PDF [13]], [BibTeX [14]]


2016

Semin, A. and Schmidt, K. Absorbing boundary conditions for the viscous acoustic wave equation [15]. Math. Meth. Appl. Sci., 39(17): 5043–5065, 11 2016. [DOI [16]], [BibTeX [17]]


Péron, V., Schmidt, K. and Duruflé, M. Equivalent Transmission Conditions for the time-harmonic Maxwell equations in 3D for a Medium with a Highly Conductive Thin Sheet [18]. SIAM J. Appl. Math., 76(3): 1031–1052, May 2016. [DOI [19]], [PDF [20]], [BibTeX [21]]


Delourme, B., Schmidt, K. and Semin, A. On the homogenization of thin perforated walls of finite length [22]. Asymptotic Analysis, 97(3-4): 211-264, 2016. [DOI [23]], [PDF [24]], [BibTeX [25]]


2015

Fliss, S., Klindworth, D. and Schmidt, K. Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides [26]. BIT, 55(1): 81–115, 2015. [DOI [27]], [PDF [28]], [BibTeX [29]]


Garnier, J., Papanicolaou, G., Semin, A. and Tsogka, C. Signal to Noise Ratio Analysis in Virtual Source Array Imaging [30]. SIAM Journal on Imaging Sciences, 8(1): 248–279, 2015. [DOI [31]], [PDF [32]], [BibTeX [33]]


Schmidt, K., Diaz, J. and Heier, C. Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order [34]. Comput. Math. Appl., 70(9): 2252–2269, 2015. [DOI [35]], [PDF [36]], [BibTeX [37]]


Schmidt, K. and Heier, C. An analysis of Feng's and other symmetric local absorbing boundary conditions [38]. ESAIM Math. Model. Numer. Anal., 49(1): 257–273, 2015. [DOI [39]], [PDF [40]], [BibTeX [41]]


Schmidt, K. and Hiptmair, R. Asymptotic boundary element methods for thin conducting sheets [42]. Discrete Contin. Dyn. Syst. Ser. S, 8(3): 619–647, 2015. [DOI [43]], [BibTeX [44]]


2014

Klindworth, D. and Schmidt, K. Dirichlet-to-Neumann transparent boundary conditions for photonic crystal wave-guides [45]. IEEE Trans. Magn., 50: 217–220, Feb 2014. [DOI [46]], [PDF [47]], [BibTeX [48]]


Schmidt, K. and Chernov, A. Robust transmission conditions of high order for thin conducting sheets in two dimensions [49]. IEEE Trans. Magn., 50(2): 41–44, Feb 2014. [DOI [50]], [PDF [51]], [BibTeX [52]]


Schmidt, K. and Hiptmair, R. Asymptotic boundary element methods for thin conducting sheets in two dimensions [53]. IEEE Trans. Magn., 50: 469–472, Feb 2014. [DOI [54]], [PDF [55]], [BibTeX [56]]


Klindworth, D. and Schmidt, K. An efficient calculation of photonic crystal band structures using Taylor expansions [57]. Commun. Comput. Phys., 16(5): 1355–1388, 2014. [PDF [58]], [BibTeX [59]]


vor >> [62]

Nach oben

Technical Reports

Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets [63]. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF [64]], [BibTeX [65]]


Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots [66]. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF [67]], [BibTeX [68]]


Semin, A. Numerical resolution of the wave equation on a network of slots [69]. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF [70]], [BibTeX [71]]


Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots [72]. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF [73]], [BibTeX [74]]


Nach oben

Proceedings

Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets [75]. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX [76]]


Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks [77]. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX [78]]


Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots [79]. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX [80]]


Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets [81]. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX [82]]


Nach oben

Chapters in Books

Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations [83]. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI [84]], [BibTeX [85]]


Nach oben

PhD Theses

Klindworth, D. On the numerical computation of photonic crystal waveguide band structures [86]. Technische Universität Berlin, 2015. [PDF [87]], [BibTeX [88]]


Semin, A. Propagation d'ondes dans des jonctions de fentes minces [89]. Université de Paris-Sud 11, Nov 2010. [BibTeX [90]]


Schmidt, K. High-order numerical modeling of highly conductive thin sheets [91]. ETH Zurich, Jul 2008. [PDF [92]], [BibTeX [93]]


Nach oben

Adresse

TU Berlin
Institut für Mathematik
Sekr. MA 6-4
Straße des 17. Juni 136
D-10623 Berlin

So finden Sie uns

Mathematikgebäude (MA)
3. Obergeschoss
Räume 363, 365 u. 379

  • Campusplan [94]
  • Campusplan (pdf) [95]
  • Anfahrt (Google Maps) [96]

[97]

[98]

[99]

Links

  • C++ Bibliothek "Concepts" [100]
------ Links: ------

Zusatzinformationen / Extras

Direktzugang

Schnellnavigation zur Seite über Nummerneingabe

Diese Seite verwendet Matomo für anonymisierte Webanalysen. Mehr Informationen und Opt-Out-Möglichkeiten unter Datenschutz.
Copyright TU Berlin 2008