Publikationen
Thöns-Zueva, A., Schmidt, K. and Semin, A. Multiharmonic analysis for nonlinear acoustics with different scales. arXiv:1701.02097, TU Berlin, 2017. [PDF], [BibTeX]
Schmidt, K. and Thöns-Zueva, A. Impedance boundary conditions for acoustic time harmonic wave propagation in viscous gases. Preprint series of the Institute of Mathematics, 6-2014, Technische Universität Berlin, 2014. [PDF], [BibTeX]
Nach oben
Sie sind auf Seite:1 | 2 | 3
Schmidt, K. and Hiptmair, R. Asymptotic expansion techniques for singularly perturbed boundary integral equations. Numer. Math., 137(2): 397–415, 2017. [DOI], [BibTeX]
Semin, A., Delourme, B. and Schmidt, K. On the homogenization of the Helmholtz problem with thin perforated walls of finite length. ESAIM Math. Model. Numer. Anal., 2017. [BibTeX]
Drescher, L., Heumann, H. and Schmidt, K. A High Order Galerkin Method for Integrals over Contour Lines with an Application to Plasma Physics. SIAM Numer. Math., 2017. [PDF], [BibTeX]
Semin, A. and Schmidt, K. Absorbing boundary conditions for the viscous acoustic wave equation. Math. Meth. Appl. Sci., 39(17): 5043–5065, 11 2016. [DOI], [BibTeX]
Péron, V., Schmidt, K. and Duruflé, M. Equivalent Transmission Conditions for the time-harmonic Maxwell equations in 3D for a Medium with a Highly Conductive Thin Sheet. SIAM J. Appl. Math., 76(3): 1031–1052, May 2016. [DOI], [PDF], [BibTeX]
Delourme, B., Schmidt, K. and Semin, A. On the homogenization of thin perforated walls of finite length. Asymptotic Analysis, 97(3-4): 211-264, 2016. [DOI], [PDF], [BibTeX]
Fliss, S., Klindworth, D. and Schmidt, K. Robin-to-Robin transparent boundary conditions for the computation of guided modes in photonic crystal wave-guides. BIT, 55(1): 81–115, 2015. [DOI], [PDF], [BibTeX]
Garnier, J., Papanicolaou, G., Semin, A. and Tsogka, C. Signal to Noise Ratio Analysis in Virtual Source Array Imaging. SIAM Journal on Imaging Sciences, 8(1): 248–279, 2015. [DOI], [PDF], [BibTeX]
Schmidt, K., Diaz, J. and Heier, C. Non-conforming Galerkin finite element methods for local absorbing boundary conditions of higher order. Comput. Math. Appl., 70(9): 2252–2269, 2015. [DOI], [PDF], [BibTeX]
Schmidt, K. and Heier, C. An analysis of Feng's and other symmetric local absorbing boundary conditions. ESAIM Math. Model. Numer. Anal., 49(1): 257–273, 2015. [DOI], [PDF], [BibTeX]
Schmidt, K. and Hiptmair, R. Asymptotic boundary element methods for thin conducting sheets. Discrete Contin. Dyn. Syst. Ser. S, 8(3): 619–647, 2015. [DOI], [BibTeX]
Klindworth, D. and Schmidt, K. Dirichlet-to-Neumann transparent boundary conditions for photonic crystal wave-guides. IEEE Trans. Magn., 50: 217–220, Feb 2014. [DOI], [PDF], [BibTeX]
Schmidt, K. and Chernov, A. Robust transmission conditions of high order for thin conducting sheets in two dimensions. IEEE Trans. Magn., 50(2): 41–44, Feb 2014. [DOI], [PDF], [BibTeX]
Schmidt, K. and Hiptmair, R. Asymptotic boundary element methods for thin conducting sheets in two dimensions. IEEE Trans. Magn., 50: 469–472, Feb 2014. [DOI], [PDF], [BibTeX]
Klindworth, D. and Schmidt, K. An efficient calculation of photonic crystal band structures using Taylor expansions. Commun. Comput. Phys., 16(5): 1355–1388, 2014. [PDF], [BibTeX]
Schmidt, K. and Chernov, A. Robust families of transmission conditions of high order for thin conducting sheets. INS Report, 1102, pp. 1–33, Institute for Numerical Simulation, University of Bonn, Feb 2011. [PDF], [BibTeX]
Semin, A. and Joly, P. Study of propagation of acoustic waves in junction of thin slots. Research Report, RR-7265, pp. 1–56, INRIA, Apr 2010. [PDF], [BibTeX]
Semin, A. Numerical resolution of the wave equation on a network of slots. Technical Report, RT-369, pp. 1–35, INRIA, 2009. [PDF], [BibTeX]
Joly, P. and Semin, A. Propagation of an acoustic wave in a junction of two thin slots. Research Report, RR-6708, pp. 1–61, INRIA, 2008. [PDF], [BibTeX]
Schmidt, K. and Chernov, A. Robust transmission conditions of high-order for thin conducting sheets. Proc. 10th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 691–694, Jul 2011. [BibTeX]
Joly, P. and Semin, A. Propagation of acoustic waves in fractal networks. Oberwolfach Report, Vol. 10: pp. 86–89, 2010. [BibTeX]
Joly, P. and Semin, A. Construction and analysis of improved Kirchoff conditions for acoustic wave propagation in a junction of thin slots. Proc. 9th International Conference on Mathematical and Numerical Aspects of Wave Propagation: pp. 140–141, Jun 2009. [BibTeX]
Schmidt, K. and Tordeux, S. Asymptotic expansion of highly conductive thin sheets. PAMM – Proceedings of ICIAM’07, Vol. 7: pp. 2040011-2040012, Jul 2008. [BibTeX]
Klindworth, D., Ehrhardt, M. and Koprucki, T. Discrete Transparent Boundary Conditions for Multi-Band Effective Mass Approximations. In Ehrhardt, M. and Koprucki, T. (editors), Multi-Band Effective Mass Approximations, Lecture Notes in Computational Science and Engineering, Vol. 94, Chapter 8, pp. 273–318, 2014. [DOI], [BibTeX]
Zurück