H_∞-Norm Computation for Large-Scale Descriptor Systems

Peter Benner Matthias Voigt

Computational Methods in Systems and Control Theory
Max Planck Institute for Dynamics of Complex Technical Systems
Magdeburg, Germany
1 Introduction

2 \mathcal{H}_∞-Norm and Structured Complex Stability Radius

3 Computation of the Structured Pseudospectral Abscissa

4 Numerical Examples

5 Conclusions and Open Problems
1 Introduction

2 \mathcal{H}_∞-Norm and Structured Complex Stability Radius

3 Computation of the Structured Pseudospectral Abscissa

4 Numerical Examples

5 Conclusions and Open Problems
Continuous-Time Descriptor Systems

Given: Continuous-time LTI descriptor system

\[\Sigma : \begin{cases}
E \dot{x}(t) = Ax(t) + Bu(t), \\
y(t) = Cx(t)
\end{cases} \]

- \(E, A \in \mathbb{R}^{n \times n} \), \(B \in \mathbb{R}^{n \times m} \), \(C \in \mathbb{R}^{p \times n} \), \(m, p \ll n \),
- descriptor vector \(x(t) \in \mathbb{R}^n \), input vector \(u(t) \in \mathbb{R}^m \), output vector \(y(t) \in \mathbb{R}^p \).
- Assumptions: \(\lambda E - A \) is regular, all matrices are large and sparse.
Continuous-Time Descriptor Systems

Given: Continuous-time LTI descriptor system

\[
\Sigma: \begin{cases}
 E \dot{x}(t) = Ax(t) + Bu(t), \\
 y(t) = Cx(t)
\end{cases}
\]

- \(E, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, m, p \ll n, \)
- descriptor vector \(x(t) \in \mathbb{R}^n \), input vector \(u(t) \in \mathbb{R}^m \), output vector \(y(t) \in \mathbb{R}^p \).
- Assumptions: \(\lambda E - A \) is regular, all matrices are large and sparse.

Frequency domain representation

Transfer function \(G(s) := C(sE - A)^{-1}B \)
H_∞-Spaces and H_∞-Norm

Definition: the space H_p^m

\[H_p^m \] – Hardy space of \(p \times m \) functions of the form

\[G(s) = C(sE - A)^{-1}B \]

which are analytic and bounded in the open right half-plane, i.e., they are

- **well-defined** (\(\lambda E - A \) regular);
- **stable** (all poles in open left half-plane);
- **proper** (bounded at infinity).
H∞-Spaces and H∞-Norm

Definition: the space H_{p\times m}^∞

\(H_{p\times m}^∞ \) – Hardy space of \(p \times m \) functions of the form

\[
G(s) = C(sE - A)^{-1}B
\]

which are analytic and bounded in the open right half-plane, i.e., they are

- **well-defined** (\(\lambda E - A \) regular);
- **stable** (all poles in open left half-plane);
- **proper** (bounded at infinity).

Definition: H∞-norm

Natural norm for the space \(H_{∞}^{p×m} \):

\[
\| G \|_{H_{∞}} := \sup_{s \in \mathbb{C}^+} \sigma_{\max}(G(s)) = \sup_{\omega \in \mathbb{R}} \sigma_{\max}(G(i\omega)).
\]
Applications

Model order reduction

Let $\hat{\Sigma} = (\hat{\lambda} \hat{E} - \hat{A}, \hat{B}, \hat{C})$ be a reduced order model of the system Σ. The transfer function of the error system $\Sigma^\text{err} := \Sigma - \hat{\Sigma}$ is given by

$$G^\text{err}(s) = [C - \hat{C}] \left(s \begin{bmatrix} E & 0 \\ 0 & \hat{E} \end{bmatrix} - \begin{bmatrix} A & 0 \\ 0 & \hat{A} \end{bmatrix} \right)^{-1} \begin{bmatrix} B \end{bmatrix}.$$

$\|G^\text{err}\|_{H_\infty}$ is the size of the worst-case approximation error.
Model order reduction

Let $\hat{\Sigma} = (\lambda \hat{E} - \hat{A}, \hat{B}, \hat{C})$ be a reduced order model of the system Σ. The transfer function of the error system $\Sigma^{\text{err}} := \Sigma - \hat{\Sigma}$ is given by

$$G^{\text{err}}(s) = [C - \hat{C}] \left(s \begin{bmatrix} E & 0 \\ 0 & \hat{E} \end{bmatrix} - \begin{bmatrix} A & 0 \\ 0 & \hat{A} \end{bmatrix} \right)^{-1} \begin{bmatrix} B \\ \hat{B} \end{bmatrix}.$$

$\|G^{\text{err}}\|_{\mathcal{H}\infty}$ is the size of the worst-case approximation error.

\mathcal{H}_∞-control [Green, Limebeer '95]

- Plant P, dynamic compensator K,
- noise w, estimation error z,
- \mathcal{H}_∞-norm of the transfer function from w to z displays the worst-case influence of the disturbances w on the output z.
1 Introduction

2 \mathcal{H}_∞-Norm and Structured Complex Stability Radius

3 Computation of the Structured Pseudospectral Abscissa

4 Numerical Examples

5 Conclusions and Open Problems
Structured Complex Stability Radius

What happens to stability/properness if we perturb G?

Consider the perturbed transfer function

$$G_\Delta(s) := C(sE - (A + B\Delta C))^{-1}B$$

with $\Delta \in \mathbb{C}^{m \times p}$.

Question: What is the smallest ε such that there exists a Δ with $\|\Delta\|_2 < \varepsilon$ and $G_\Delta \notin \mathcal{H}^{p \times m}_\infty$? (= structured complex stability radius $r_{\mathbb{C}}(E, A, B, C)$)
Structured Complex Stability Radius

What happens to stability/properness if we perturb G?

Consider the perturbed transfer function

$$G_\Delta(s) := C(sE - (A + B\Delta C))^{-1}B$$

with $\Delta \in \mathbb{C}^{m \times p}$.

Question: What is the smallest ε such that there exists a Δ with $\|\Delta\|_2 < \varepsilon$ and $G_\Delta \not\in \mathcal{H}_\infty^{p \times m}$? (=$\text{structured complex stability radius } r_C(E, A, B, C)$)

Connection to \mathcal{H}_∞-norm

$$r_C(E, A, B, C) = \begin{cases} \|G\|_{\mathcal{H}_\infty}^{-1} & \text{if } G \not\equiv 0, \\ \infty & \text{if } G \equiv 0. \end{cases}$$

standard: [Hinrichsen, Pritchard ’86], descriptor: [B., V. ’12]
Distinction of Cases

Reminder

\[G_\Delta(s) := C(sE - (A + B\Delta C))^{-1}B, \]
\[r_C(E, A, B, C) := \min \{ \|\Delta\|_2 : G_\Delta \notin \mathcal{H}_\infty^{p \times m} \}. \]

Behavior at \(\infty \)

\[r_\infty^C(E, A, B, C) := \inf \{ \|\Delta\|_2 : G_\Delta \text{ is improper or} \]
\[\lambda E - (A + B\Delta C) \text{ is a singular pencil} \}. \]
Distinction of Cases

Reminder

\[G_\Delta(s) := C(sE - (A + B\Delta C))^{-1}B, \]
\[r_C(E, A, B, C) := \min \left\{ \|\Delta\|_2 : G_\Delta \notin \mathcal{H}^{p \times m}_\infty \right\}. \]

Behavior at \(\infty \)

\[r_C^\infty(E, A, B, C) := \inf \left\{ \|\Delta\|_2 : G_\Delta \text{ is improper or} \right. \]
\[\lambda E - (A + B\Delta C) \text{ is a singular pencil} \}. \]

Lemma

\[r_C^\infty(E, A, B, C) = \begin{cases}
1/ \lim_{\omega \to \infty} \sigma_{\max}(G(i\omega)) & \text{if } G \not\equiv 0, \\
\infty & \text{if } G \equiv 0.
\end{cases} \]
Distinction of Cases

Reminder

\[G_\Delta(s) : = C(sE - (A + B\Delta C))^{-1}B, \]
\[r_C(E, A, B, C) : = \min \{ \|\Delta\|_2 : G_\Delta \not\in \mathcal{H}_\infty^{p \times m} \} . \]

Behavior at (finite) poles

\[r_f(E, A, B, C) : = \inf \{ \|\Delta\|_2 : \Pi_f(E, A + B\Delta C, B, C) \cap i\mathbb{R} \neq \emptyset \} , \]
where \(\Pi_f(E, A, B, C) \) denotes the set of poles of \(G(s) = C(sE - A)^{-1}B. \)
Definitions

Definition: structured pseudospectrum of \(G \)

\[
\Psi_{\varepsilon}(E, A, B, C) = \{s \in \mathbb{C} : s \in \Psi_f(E, A + B\Delta C, B, C) \text{ for some } \\
\Delta \in \mathbb{C}^{m \times p} \text{ with } \|\Delta\|_2 < \varepsilon \}.
\]

Definition: structured pseudospectral abscissa

\[
\alpha_{\varepsilon}(E, A, B, C) := \max \{\text{Re } s : s \in \Psi_{\varepsilon}(E, A, B, C)\}.
\]

(= the real part of the rightmost pseudopole)
Definitions

Definition: structured pseudospectrum of \(G \)

\[
\Pi_\varepsilon(E, A, B, C) = \{ s \in \mathbb{C} : s \in \Pi_f(E, A + B\Delta C, B, C) \text{ for some } \\
\Delta \in \mathbb{C}^{m \times p} \text{ with } \|\Delta\|_2 < \varepsilon \}.
\]

Definition: structured pseudospectral abscissa

\[
\alpha_\varepsilon(E, A, B, C) := \max \{ \text{Re } s : s \in \Pi_\varepsilon(E, A, B, C) \}.
\]

\((= \text{the real part of the rightmost pseudopole})\)

Consequence

\[
\alpha_{rf}^C(E, A, B, C) = 0.
\]
Definitions

Definition: structured pseudospectrum of G

$$\Pi_\varepsilon(E, A, B, C) = \{s \in \mathbb{C} : s \in \Pi_f(E, A + B\Delta C, B, C) \text{ for some } \Delta \in \mathbb{C}^{m \times p} \text{ with } \|\Delta\|_2 < \varepsilon\}.$$

Definition: structured pseudospectral abscissa

$$\alpha_\varepsilon(E, A, B, C) := \max \{\Re s : s \in \Pi_\varepsilon(E, A, B, C)\}.$$

($= \text{the real part of the rightmost pseudopole}$)

Consequence

$$\alpha_{rf}^f(E, A, B, C) = 0.$$

\implies We have to find the value ε for which the corresponding structured pseudospectrum $\Pi_\varepsilon(E, A, B, C)$ touches the imaginary axis!
Graphical Interpretation
Graphical Interpretation

The figure shows a graphical interpretation of the real and imaginary parts of \(\lambda \) for different values of \(\varepsilon \). The contours represent the regions where \(\lambda \) lies for given \(\varepsilon \) values.

- \(\varepsilon_1 \) and \(\varepsilon_2 \) are different parameter values that define the regions.

The plus signs (+) indicate specific points in the complex plane that are of interest for the analysis.

The graph helps in visualizing the stability properties of the system by showing how \(\lambda \) behaves under different perturbations.
Graphical Interpretation
Graphical Interpretation

![Graphical Interpretation]

- \(\varepsilon_3 \)
- \(\varepsilon_2 \)
- \(\varepsilon_1 \)
- \(r_{fc}^f = \varepsilon_2 \)
- \(\alpha(\varepsilon_3) \)
Finding $r_C^f(E,A,B,C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_{\varepsilon}(E,A,B,C)$. Thus we apply a root-finding algorithm. We

- do not have derivative information \implies Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \implies secant method.
Algorithm Outline

Finding $r_f^c(E, A, B, C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C)$. Thus we apply a root-finding algorithm. We

- do not have derivative information \implies Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \implies secant method.
Algorithm Outline

Finding $r_f^\xi(E, A, B, C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C)$. Thus we apply a root-finding algorithm. We
- do not have derivative information \implies Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \implies secant method.
Algorithm Outline

Finding $r^f_{\mathbb{C}}(E, A, B, C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C)$. Thus we apply a root-finding algorithm. We

- do not have derivative information \Rightarrow Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \Rightarrow secant method.
Algorithm Outline

Finding $r_f^E(E, A, B, C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C)$. Thus we apply a root-finding algorithm. We
- do not have derivative information \implies Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \implies secant method.

![Graph showing root-finding process]

Max Planck Institute Magdeburg

Matthias Voigt, \mathcal{H}_∞-Norm Computation for Large-Scale Descriptor Systems
Algorithm Outline

Finding $r_C^f(E, A, B, C)$ is equivalent to finding the (unique) root of $\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C)$. Thus we apply a root-finding algorithm. We
- do not have derivative information \implies Newton-like method not possible,
- can evaluate $\alpha(\varepsilon)$ relatively cheaply \implies secant method.
Finding \(r^f_C(E, A, B, C) \) is equivalent to finding the (unique) root of \(\alpha(\varepsilon) := \alpha_\varepsilon(E, A, B, C) \). Thus we apply a root-finding algorithm. We
- do not have derivative information \(\implies \) Newton-like method not possible,
- can evaluate \(\alpha(\varepsilon) \) relatively cheaply \(\implies \) secant method.
1. Introduction

2. H_{∞}-Norm and Structured Complex Stability Radius

3. Computation of the Structured Pseudospectral Abscissa

4. Numerical Examples

5. Conclusions and Open Problems
Theorem

Let \(s \in \mathbb{C} \setminus \Pi_f(E, A, B, C) \) be given and \(\varepsilon > 0 \). Then the following statements are equivalent:

(a) \(s \in \Pi_\varepsilon(E, A, B, C) \).

(b) \(\sigma_{\max}(G(s)) > \varepsilon^{-1} \).

(c) There exist vectors \(u \in \mathbb{C}^m \) and \(v \in \mathbb{C}^p \) with \(\|u\|_2 < 1 \) and \(\|v\|_2 < 1 \) such that \(s \in \Pi_f(E, A + \varepsilon Bu v^H C, B, C) \).

unstructured: [RIEDEL ’94], structured: [B., V. ’12]
Preliminaries

Theorem

Let $s \in \mathbb{C} \setminus \Pi_f(E, A, B, C)$ be given and $\varepsilon > 0$. Then the following statements are equivalent:

(a) $s \in \Pi_\varepsilon(E, A, B, C)$.
(b) $\sigma_{\text{max}}(G(s)) > \varepsilon^{-1}$.
(c) There exist vectors $u \in \mathbb{C}^m$ and $v \in \mathbb{C}^p$ with $\|u\|_2 < 1$ and $\|v\|_2 < 1$ such that $s \in \Pi_f(E, A + \varepsilon Buv^H C, B, C)$.

unstructured: [RIEDEL ’94], structured: [B., V. ’12]

Corollary

$$\Pi_\varepsilon(E, A, B, C) = \Pi_f(E, A, B, C) \cup \{ s \in \mathbb{C} : \sigma_{\text{max}}(G(s)) > \varepsilon^{-1} \}$$

with boundary

$$\partial \Pi_\varepsilon(E, A, B, C) = \{ s \in \mathbb{C} : \sigma_{\text{max}}(G(s)) = \varepsilon^{-1} \}.$$
First-Order Perturbation Theory

Strategy: Compute a sequence of suitable structured rank-1 perturbed pencils \(\lambda E - (A + \varepsilon Buv^H C) \) such that one of the perturbed eigenvalues converges to the rightmost pseudopole of \(G \! \]

\[\text{[GUGLIELMI, OVERTON '11]} \]
First-Order Perturbation Theory

Strategy: Compute a sequence of suitable structured rank-1 perturbed pencils $\lambda E - (A + \varepsilon Buv^H C)$ such that one of the perturbed eigenvalues converges to the rightmost pseudopole of G!

[GUGLIELMI, OVERTON '11]

Lemma [STEWART, SUN '90]

Let $x, y \in \mathbb{C}^n$ be right and left eigenvectors corresponding to a simple finite eigenvalue $\lambda = \frac{y^H Ax}{y^H Ex}$ of the pencil $\lambda E - A$. Let $\lambda E - (A + tBuv^H C)$ be a perturbed matrix pencil with eigenvalue $\tilde{\lambda}$. Then it holds

$$\tilde{\lambda} = \lambda + t \frac{y^H Buv^H Cx}{y^H Ex} + O(t^2) .$$
First-Order Perturbation Theory

Strategy: Compute a sequence of suitable structured rank-1 perturbed pencils $\lambda E - (A + \varepsilon Buv^H C)$ such that one of the perturbed eigenvalues converges to the rightmost pseudopole of G!

$\text{[GUGLIELMI, OVERTON '11]}

Lemma

$\text{[STEWART, SUN '90]}

Let $x, y \in \mathbb{C}^n$ be right and left eigenvectors corresponding to a simple finite eigenvalue $\lambda = \frac{y^H A x}{y^H E x}$ of the pencil $\lambda E - A$. Let $\lambda E - (A + tBuv^H C)$ be a perturbed matrix pencil with eigenvalue $\tilde{\lambda}$. Then it holds

$$\tilde{\lambda} = \lambda + t \frac{y^H Buv^H C x}{y^H E x} + O(t^2).$$

Corollary

$$\frac{d\tilde{\lambda}(t)}{dt} \bigg|_{t=0} = \frac{y^H Buv^H C x}{y^H E x}.$$
Given: Matrix pencil $\lambda E - A$ with simple eigenvalue λ and right and left eigenvectors x, y, normalized such that $y^HEx > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$.
Construction of Structured Rank-1 Perturbations

Given: Matrix pencil $\lambda E - A$ with simple eigenvalue λ and right and left eigenvectors x, y, normalized such that $y^H Ex > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$.

\[
\text{Re} \left(\frac{d \tilde{\lambda}(t)}{dt} \bigg|_{t=0} \right) = \frac{\text{Re} \left(y^H Buv^H Cx \right)}{y^H Ex} \\
\leq \frac{\|y^H B\|_2 \|Cx\|_2}{y^H Ex}.
\]
Construction of Structured Rank-1 Perturbations

Given: Matrix pencil $\lambda E - A$ with simple eigenvalue λ and right and left eigenvectors x, y, normalized such that $y^H Ex > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$.

\[
\text{Re} \left(\frac{d\tilde{\lambda}(t)}{dt} \right) \bigg|_{t=0} = \frac{\text{Re} \left(y^H B u v^H C x \right)}{y^H Ex} \leq \frac{\|y^H B\|_2 \|C x\|_2}{y^H Ex}.
\]

Equality holds for

\[
u = \frac{C x}{\|C x\|_2}, \quad u = \frac{B^T y}{\|B^T y\|_2}.
\]

\[\Rightarrow\] This choice of u, v yields locally maximal growth in $\text{Re}(\tilde{\lambda}(t))$ as t increases from 0.
Subsequent Steps

Given: Perturbed matrix pencil \(\lambda E - \hat{A} = \lambda E - (A + \varepsilon B \hat{u} \hat{v}^H C) \) with simple eigenvalue \(\hat{\lambda} \), and right and left eigenvectors \(\hat{x}, \hat{y} \), normalized such that \(\hat{y}^H E \hat{x} > 0 \); vectors \(u \in \mathbb{C}^m \), \(v \in \mathbb{C}^p \) with \(\| u \|_2 = \| v \|_2 = 1 \).
Subsequent Steps

Given: Perturbed matrix pencil $\lambda E - \hat{A} = \lambda E - (A + \varepsilon B\hat{u}\hat{v}^H C)$ with simple eigenvalue $\hat{\lambda}$, and right and left eigenvectors \hat{x}, \hat{y}, normalized such that $\hat{y}^H E\hat{x} > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$. Consider

$$\lambda E - \left(\hat{A} + tB\left(uv^H - \hat{u}\hat{v}^H\right)C\right),$$

which is an ε-norm rank-1 perturbation of $\lambda E - A$ for $t = 0$, $t = \varepsilon$.
Subsequent Steps

Given: Perturbed matrix pencil $\lambda E - \hat{A} = \lambda E - (A + \varepsilon B\hat{u}\hat{v}^H C)$ with simple eigenvalue $\hat{\lambda}$, and right and left eigenvectors \hat{x}, \hat{y}, normalized such that $\hat{y}^H E \hat{x} > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$. Consider

$$
\lambda E - \left(\hat{A} + tB (uv^H - \hat{u}\hat{v}^H) C \right),
$$

which is an ε-norm rank-1 perturbation of $\lambda E - A$ for $t = 0$, $t = \varepsilon$.

$$
\text{Re} \left(\frac{d\tilde{\lambda}(t)}{dt} \bigg|_{t=0} \right) = \frac{\text{Re} (\hat{y}^H B (uv^H - \hat{u}\hat{v}^H) C \hat{x})}{\hat{y}^H E \hat{x}}
\leq \frac{\|\hat{y}^H B\|_2 \|C \hat{x}\|_2 - \text{Re} (\hat{y}^H B\hat{u}\hat{v}^H C \hat{x})}{\hat{y}^H E \hat{x}}.
$$
Subsequent Steps

Given: Perturbed matrix pencil $\lambda E - \hat{A} = \lambda E - (A + \varepsilon B \hat{u} \hat{v}^H C)$ with simple eigenvalue $\hat{\lambda}$, and right and left eigenvectors \hat{x}, \hat{y}, normalized such that $\hat{y}^H E \hat{x} > 0$; vectors $u \in \mathbb{C}^m$, $v \in \mathbb{C}^p$ with $\|u\|_2 = \|v\|_2 = 1$. Consider

$$\lambda E - \left(\hat{A} + tB (uv^H - \hat{u} \hat{v}^H) C\right),$$

which is an ε-norm rank-1 perturbation of $\lambda E - A$ for $t = 0$, $t = \varepsilon$.

$$\Re \left(\frac{d\hat{\lambda}(t)}{dt}\right)\bigg|_{t=0} = \frac{\Re \left(\hat{y}^H B (uv^H - \hat{u} \hat{v}^H) C \hat{x}\right)}{\hat{y}^H E \hat{x}} \leq \frac{\|\hat{y}^H B\|_2 \|C \hat{x}\|_2 - \Re \left(\hat{y}^H B \hat{u} \hat{v}^H C \hat{x}\right)}{\hat{y}^H E \hat{x}}.$$

Again, equality holds for

$$u = \frac{B^T \hat{y}}{\|B^T \hat{y}\|_2}, \quad v = \frac{C \hat{x}}{\|C \hat{x}\|_2},$$

which is our next perturbation!
Choice of the Poles

We showed how to optimally perturb a chosen pole!

But: Which pole is the best choice?
Choice of the Poles

We showed how to optimally perturb a chosen pole!

But: Which pole is the best choice? It should

- have a sufficiently large real part,
- be sufficiently controllable and observable, i.e., \(\| B^T y \|_2 \) and \(\| Cx \|_2 \) are “large”

... to get fast convergence.
Choice of the Poles

We showed how to optimally perturb a chosen pole!

But: Which pole is the best choice? It should

- have a sufficiently large real part,
- be sufficiently controllable and observable, i.e., $\|B^Ty\|_2$ and $\|Cx\|_2$ are “large”

...to get fast convergence.

Idea: Use an iterative eigensolver which converges to the eigenvalues which have highest “dominance” with respect to some predefined measure!
Choice of the Poles

We showed how to optimally perturb a chosen pole!

But: Which pole is the best choice? It should

- have a sufficiently large real part,
- be sufficiently controllable and observable, i.e., $\| B^T y \|_2$ and $\| Cx \|_2$

are “large”

to get fast convergence.

Idea: Use an iterative eigensolver which converges to the eigenvalues which have highest “dominance” with respect to some predefined measure!

\implies **Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP)**

[Rommes, Martins '06]
Dominant Poles

Assume that $\lambda E - A$ has only simple eigenvalues λ_k with left and right eigenvectors y_k and x_k such that $y_k^H Ex_k = 1$. If $G(s)$ is proper then

$$G(s) = C(sE - A)^{-1}B = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k} + R_\infty$$

with residues

$$R_k = Cx_k y_k^H B, \quad R_\infty = \lim_{\omega \to \infty} G(i\omega).$$
Dominant Poles

Assume that $\lambda E - A$ has only simple eigenvalues λ_k with left and right eigenvectors y_k and x_k such that $y_k^H E x_k = 1$. If $G(s)$ is proper then

$$G(s) = C(sE - A)^{-1}B = \sum_{k=1}^{n} \frac{R_k}{s - \lambda_k} + R_{\infty}$$

with residues

$$R_k = C x_k y_k^H B, \quad R_{\infty} = \lim_{\omega \to \infty} G(i\omega).$$

Observation: If λ_j is close to the imaginary axis and $\|R_j\|_2$ is large, then

$$G(i\omega) \approx \frac{R_j}{-\text{Re}(\lambda_j)} + \sum_{k=1}^{n} \frac{R_k}{i\omega - \lambda_k} + R_{\infty}$$

for $\omega \approx \text{Im}(\lambda_j)$ and therefore $\|G(i\omega)\|_2$ is large, too.
Dominant Poles

Definition

An eigenvalue $\lambda_j \in \Lambda(E, A)$ is called **dominant pole** of $G(s)$, if

\[
\frac{\|R_k\|_2}{|\text{Re}(\lambda_k)|} < \frac{\|R_j\|_2}{|\text{Re}(\lambda_j)|}, \quad k = 1, \ldots, n, \quad k \neq j.
\]
Dominant Poles

Definition

An eigenvalue $\lambda_j \in \Lambda(E, A)$ is called dominant pole of $G(s)$, if

$$\frac{\|R_k\|_2}{|\text{Re}(\lambda_k)|} < \frac{\|R_j\|_2}{|\text{Re}(\lambda_j)|}, \quad k = 1, \ldots, n, \quad k \neq j.$$

Problem with this Approach:

Poles loose dominance when they have crossed the imaginary axis

\implies need an alternative dominance measure!
Dominant Poles – New Definition

Definition

An eigenvalue $\lambda_j \in \Lambda(E, A)$ is called (exponentially) dominant pole of $G(s)$, if

$$\|R_k\|_2 \exp(\beta \Re(\lambda_k)) < \|R_j\|_2 \exp(\beta \Re(\lambda_j)), \quad k = 1, \ldots, n, \quad k \neq j.$$
Dominant Poles – New Definition

Definition

An eigenvalue $\lambda_j \in \Lambda(E, A)$ is called (exponentially) dominant pole of $G(s)$, if

$$\|R_k\|_2 \exp(\beta \text{Re}(\lambda_k)) < \|R_j\|_2 \exp(\beta \text{Re}(\lambda_j)), \quad k = 1, \ldots, n, \quad k \neq j.$$

Remarks:

- β is a weighting factor which can be choosen to weigh the relevance of real part with the residual.
- For our purpose: $\beta = 100$ (high weight on real part).
- SAMDP can also be used to generate very good initial estimates of the \mathcal{H}_∞-norm.
The Complete Algorithm

Input: $\Sigma = (\lambda E - A, B, C)$, perturbation level ε, tolerance on relative change τ.

Output: $\alpha_\varepsilon(E, A, B, C)$.

1. Compute the dominant pole λ_0 of $(\lambda E - A, B, C)$ with left and right eigenvectors y_0 and x_0.
2. Compute the perturbation $\hat{A} = A + \varepsilon \frac{BB^T y_0 x_0^H C^T C}{\|B^T y_0\|_2 \|Cx_0\|_2}$.
3. for $j = 1, 2, \ldots$ do
4. Compute the dominant pole λ_j of $(\lambda E - \hat{A}, B, C)$ with left and right eigenvectors y_j and x_j.
5. if $|\text{Re}(\lambda_j) - \text{Re}(\lambda_{j-1})| < \tau |\text{Re}(\lambda_j)|$ then
6. Set $k = j$.
8. end if
9. Compute the perturbation $\hat{A} = A + \varepsilon \frac{BB^T y_j x_j^H C^T C}{\|B^T y_j\|_2 \|Cx_j\|_2}$.
10. end for
11. $\alpha_\varepsilon(E, A, B, C) = \text{Re}(\lambda_k)$.

Max Planck Institute Magdeburg

Matthias Voigt, \mathcal{H}_∞-Norm Computation for Large-Scale Descriptor Systems
1 Introduction

2 \mathcal{H}_∞-Norm and Structured Complex Stability Radius

3 Computation of the Structured Pseudospectral Abscissa

4 Numerical Examples

5 Conclusions and Open Problems
Example 1 – M20PI_n

Model with $n = 1182$, $m = p = 3$.

Results:

$\|G\|_{\mathcal{H}_\infty} = 3.87260$, $t = 6.03s$, $\alpha_{rf}(E, A, B, C) = -3.9700e-13$.

Table: Convergence History

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Re}(\lambda_{\text{dom}})$</td>
<td>-6.7945e-02</td>
<td>-6.0215e+00</td>
<td>-3.7397e-04</td>
<td>3.6222e-11</td>
</tr>
<tr>
<td></td>
<td>2.3140e-03</td>
<td>-6.0212e+00</td>
<td>-3.4533e-05</td>
<td>3.9094e-11</td>
</tr>
<tr>
<td></td>
<td>3.0285e-03</td>
<td>—</td>
<td>-3.2591e-05</td>
<td>3.8420e-11</td>
</tr>
<tr>
<td></td>
<td>3.0355e-03</td>
<td>—</td>
<td>-3.2572e-05</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3.0356e-03</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ε_k</td>
<td>2.58250e-01</td>
<td>2.06600e-01</td>
<td>2.58224e-01</td>
<td>2.58224e-01</td>
</tr>
</tbody>
</table>
Example 1 – M20PI_n

Model with $n = 1182$, $m = p = 3$.

Results:

$$\|G\|_{\mathcal{H}_{\infty}} = 3.87260, \quad t = 6.03\text{s}, \quad \alpha_{\mathcal{C}}(E, A, B, C) = -3.9700\cdot10^{-13}.$$
Example 1 – M20PI_n

Model with $n = 1182$, $m = p = 3$.

Results:
\[\| G \|_{\mathcal{H}_\infty} = 3.87260, \quad t = 6.03s, \quad \alpha_f(E, A, B, C) = -3.9700e-13. \]
Example 1 – M20PIₙ

Model with \(n = 1182, \ m = p = 3 \).

Results:
\[\| G \|_{\mathcal{H}_\infty} = 3.87260, \quad t = 6.03s, \quad \alpha_{r_C}(E, A, B, C) = -3.9700e-13. \]
Example 1 – M20PI_n

Model with $n = 1182$, $m = p = 3$.

Results:

$\|G\|_{\mathcal{H}_{\infty}} = 3.87260$, $t = 6.03s$, $\alpha_{rf}(E, A, B, C) = -3.9700e-13$.

Figure: Transfer function plot with computed \mathcal{H}_{∞}-norm
Example 2 – Mimo8x8 System

Model with $n = 13309$, $m = p = 8$.

Results:

$\|G\|_{\mathcal{H}_\infty} = 0.0534292$, $t = 106.62s$, $\alpha_{rf}^C(E, A, B, C) = 2.6335\times10^{-13}$.

Table: Convergence History

<table>
<thead>
<tr>
<th>k</th>
<th>$\text{Re}(\lambda_{\text{dom}})$</th>
<th>ε_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.2051e-03</td>
<td>1.87276e+01</td>
</tr>
<tr>
<td>2</td>
<td>-6.3276e-04</td>
<td>1.49821e+01</td>
</tr>
<tr>
<td>3</td>
<td>3.8109e-06</td>
<td>1.87168e+01</td>
</tr>
<tr>
<td>4</td>
<td>1.1425e-04</td>
<td>1.87164e+01</td>
</tr>
</tbody>
</table>
Example 2 – Mimo8x8 System

Model with $n = 13309$, $m = p = 8$.

Results:

$\|G\|_{\mathcal{H}_\infty} = 0.0534292$, $t = 106.62s$, $\alpha_{rf}(E, A, B, C) = 2.6335e-13$.

Figure: Transfer function plot with computed \mathcal{H}_∞-norm
Example 3 – Mimo46x46 System

Model with \(n = 13250, \ m = p = 46 \).

Results:

\[
\| G \|_{H_\infty} = 205.631, \quad t = 167.43s, \quad \alpha_{rf}(E, A, B, C) = 4.2864e-14.
\]

Table: Convergence History

<table>
<thead>
<tr>
<th>(\text{Re}(\lambda_{\text{dom}}))</th>
<th>1 (\epsilon_k)</th>
<th>2 (\epsilon_k)</th>
<th>3 (\epsilon_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9.0777e-05</td>
<td>-6.6047e-03</td>
<td>-3.6061e-06</td>
<td></td>
</tr>
<tr>
<td>2.0799e-06</td>
<td>-6.6018e-03</td>
<td>2.7127e-09</td>
<td></td>
</tr>
<tr>
<td>2.1973e-06</td>
<td>—</td>
<td>7.3774e-09</td>
<td></td>
</tr>
<tr>
<td>2.1976e-06</td>
<td>—</td>
<td>7.3907e-09</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>7.3907e-09</td>
<td></td>
</tr>
</tbody>
</table>

Max Planck Institute Magdeburg

Matthias Voigt, \(H_\infty \)-Norm Computation for Large-Scale Descriptor Systems
Example 3 – Mimo46x46 System

Model with $n = 13250$, $m = p = 46$.

Results:

$$\| G \|_{\mathcal{H}_\infty} = 205.631, \quad t = 167.43s, \quad \alpha_{rf}^C(E,A,B,C) = 4.2864e-14.$$

Figure: Transfer function plot with computed \mathcal{H}_∞-norm
1 Introduction

2 \mathcal{H}_∞-Norm and Structured Complex Stability Radius

3 Computation of the Structured Pseudospectral Abscissa

4 Numerical Examples

5 Conclusions and Open Problems
Conclusions and Outlook

Conclusions

- Introduction of relations between the structured pseudospectra and the \mathcal{H}_∞-norm of descriptor systems,
- development of an iterative algorithm for the computation of the \mathcal{H}_∞-norm by iterating over the structured pseudospectral abscissa,

Open Problems

- Discrete-time systems \rightarrow computation of the structured pseudospectral radius,
- real stability radii, passivity radius?
Conclusions and Outlook

Conclusions
- Introduction of relations between the structured pseudospectra and the H_∞-norm of descriptor systems,
- development of an iterative algorithm for the computation of the H_∞-norm by iterating over the structured pseudospectral abscissa,

Open Problems
- Discrete-time systems \Rightarrow computation of the structured pseudospectral radius,
- real stability radii, passivity radius?

Thank you for your Attention!
References

- **Benner, Voigt ’12**: *A structured pseudospectral method for \mathcal{H}_∞-norm computation of large-scale descriptor systems*, Preprint MPIMD/12-10, Max Planck Institute Magdeburg, 2012.
Example 4 – Peec (Does Not Work)

Model with $n = 480$, $m = p = 1$, lots of peaks close to $i\mathbb{R}$!

Results:
$$\|G\|_{\mathcal{H}_\infty} = 0.0379802, \quad t = 23.20s, \quad \alpha_r(E, A, B, C) = 6.1976e-11.$$
Example 4 – Peec (Does Not Work)

Model with $n = 480$, $m = p = 1$, lots of peaks close to $i\mathbb{R}$!

Results:

$$\|G\|_{\mathcal{H}_\infty} = 0.0379802, \quad t = 23.20s, \quad \alpha_{rC}(E, A, B, C) = 6.1976\times10^{-11}.$$
Example 4 – Peec (Does Not Work)

Figure: Eigenvalues (blue pluses) and the 10 most dominant poles (red circles)