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We discuss a structure-preserving algorithm for the accurate solution of generalized eigenvalue problems for skew-Hamilto-
nian/Hamiltonian matrix pencils λN −H. By embedding the matrix pencil λN −H into a skew-Hamiltonian/Hamiltonian
matrix pencil of double size it is possible to avoid the problem of non-existence of a structured Schur form. For these embed-
ded matrix pencils we can compute a particular condensed form to accurately compute the simple, finite, purely imaginary
eigenvalues of λN − H. In this paper we describe a new method to compute also the corresponding eigenvectors by using
the information contained in the condensed form of the embedded matrix pencils and associated transformation matrices.
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1 Introduction

Skew-Hamiltonian/Hamiltonian matrix pencils arise in many control applications for linear time-invariant descriptor systems
such as linear-quadratic optimal control, optimal H∞ control, passivity check, or passivity enforcement [1]. In these ap-
plications we need different spectral information, i.e., a certain subset of eigenvalues and associated deflating subspaces or
eigenvectors. In this paper we focus on the computation of the simple, finite, purely imaginary eigenvalues and associated
eigenvectors which are, e.g., needed for passivity enforcement of descriptor systems. Details of that application will be
reported elsewhere, for the standard system case we refer, e.g., to [2].

2 Computation of the Purely Imaginary Eigenvalues

A structure-preserving algorithm for computing the purely imaginary eigenvalues in a very accurate and reliable manner is
presented in [1]. We summarize the basic ideas since we need these for the eigenvector computation as well. Let λN −
H ∈ R2n×2n be a given skew-Hamiltonian/Hamiltonian matrix pencil (see [1] for the definition and structural properties).
To avoid the problem of the non-existence of a structured Schur form in the case when simple, finite, purely imaginary
eigenvalues exist, we define the double-sized matrix pencil λBN−BH := λ [N 0

0 N ]−
[H 0

0 −H
]
,whose eigenvalues now all have

even algebraic multiplicity. To restore the skew-Hamiltonian/Hamiltonian structure we perform an appropriate orthogonal
equivalence transformation λB̃N − B̃H := X T (λBN − BH)X . By using the generalized symplectic URV decomposition [1]
of λN −H we can compute an orthogonal matrix Q such that

λB̄N − B̄H := JQTJ T
(
λB̃N − B̃H

)
Q = λ


N1 0 N2 0
0 M1 0 M2

0 0 NT
1 0

0 0 0 MT
1

−


0 H11 0 H12

−HT
22 0 HT

12 0
0 0 0 H22

0 0 −HT
11 0

 ,
where J :=

[
0 I2n
−I2n 0

]
, N1, M1, H11 are upper triangular, and HT

22 is upper quasi triangular. Note that this kind of
transformation also preserves the skew-Hamiltonian/Hamiltonian structure. Now, the spectrum of λN − H is given by

Λ (H,N ) = ±i
√

Λ(N−1
1 H11M

−1
1 HT

22), where N−1
1 H11M

−1
1 HT

22 is understood as a formal matrix product in the sense
of [3]. The simple, finite, purely imaginary eigenvalues of λN − H are given by the 1 × 1 diagonal blocks of this matrix
product. Hence they do not experience any error in their real parts and can be detected in a very reliable way.

3 Computation of the Corresponding Eigenvectors

To compute the eigenvectors corresponding to the purely imaginary eigenvalues we will make use of the structure of λB̄N −
B̄H. As in passivity enforcement we only need the purely imaginary eigenvalues with positive imaginary parts, we restrict
ourselves to the computation of the eigenvectors corresponding to these eigenvalues. In the sequel we denote by EigΛ0
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a matrix whose columns are the eigenvectors of the matrix pencil λB−A associated to all eigenvalues contained in the set Λ0.
As an intermediate step, we compute EigR+

([
0 H11

HT
22 0

]
,
[
N1 0
0 M1

])
which is done by the following steps. First, we reorder

the positive real eigenvalues of the generalized matrix product P := N−1
1 H11M

−1
1 HT

22 to the top, i.e. we compute orthogonal

matrices Ui =
[
U

(1)
i U

(2)
i

]
, i = 1, . . . , 4, such that

UT
2 N1U1 =

[
N

(11)
1 N

(12)
1

0 N
(22)
1

]
, UT

2 H11U3 =

[
H

(11)
11 H

(12)
11

0 H
(22)
11

]
,

UT
4 M1U3 =

[
M

(11)
1 M

(12)
1

0 M
(22)
1

]
, UT

4 H
T
22U1 =

[
H

(11)
22 H

(12)
22

0 H
(22)
22

]

are still in upper (quasi) triangular form, but the eigenvalues of the generalized matrix product P (11) :=(
N

(11)
1

)−1

H
(11)
11

(
M

(11)
1

)−1

H
(11)
22 are the positive real ones of P [3]. However, the eigenvalues of λ

[
N

(11)
1 0

0 M
(11)
1

]
−[

0 H
(11)
11

H
(11)
22 0

]
are the positive and negative square roots of the eigenvalues of P (11) and thus we triangularize this matrix

pencil and reorder its eigenvalues by computing orthogonal matrices V1 =
[
V

(1)
1 V

(2)
1

]
, V2 =

[
V

(1)
2 V

(2)
2

]
such that

V T
1

(
λ

[
N

(11)
1 0

0 M
(11)
1

]
−

[
0 H

(11)
11

H
(11)
22 0

])
V2 = λ

[
R11 R12

0 R22

]
−
[
S11 S12

0 S22

]
,

where Λ (S11, R11) ⊂ R+ and Λ (S22, R22) ⊂ R−. Now, we can compute the eigenvectors of λR11−S11, i.e., we compute a
matrixW such that S11W = R11WD, whereD is an appropriate diagonal matrix composed of the eigenvalues of λR11−S11.
By collecting the information contained in the relevant columns of the transformation matrices, we obtain

X :=

[
X(1)

X(2)

]
:=

[
U

(1)
1 0

0 U
(1)
3

]
V

(1)
2 W = EigR+

([
0 H11

HT
22 0

]
,

[
N1 0
0 M1

])
.

It turns out that

X̃ :=

[
−iX(1)

X(2)

]
= EigiR+

([
0 H11

−HT
22 0

]
,

[
N1 0
0 M1

])
, and

[
X̃
0

]
= EigiR+(B̄H, B̄N ).

Furthermore we have

Y :=

[
Y1

Y2

]
= XQ

[
X̃
0

]
= EigiR+ (BH,BN ) .

Due to the structure of λBN − BH we can retrieve the seeked eigenvectors from the first half of the rows of Y , i.e., Y1.

4 Numerical Example

To test our method we use a 28 × 28 skew-Hamiltonian/Hamiltonian matrix pencil with 4 simple, finite, purely imaginary
eigenvalues with positive imaginary parts. The results are listed in Table 1. They show that we can compute the eigenvectors
slightly more accurate than standard methods. It can be also shown that the computational costs of the new method are slightly
lower than those of existing algorithms.

eigenvalues residuals new method residuals MATLAB eig
0.310929i 1.2932e-15 2.1913e-15
0.325141i 8.8045e-16 1.8314e-15
0.378019i 6.7260e-16 1.5523e-15
0.630326i 1.1161e-15 1.5523e-15

Table 1 Relative residuals of the new method compared to
eig from MATLAB
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