Inner-Outer Factorization via Lur’e Equations

Timo Reis\(^1\)* and Matthias Voigt\(^2\)**

\(^1\) Fachbereich Mathematik, Universität Hamburg
\(^2\) Institut für Mathematik, Technische Universität Berlin

In this paper we construct inner-outer factorizations of transfer functions governed by linear time-invariant differential-algebraic systems. This construction is based on the solution of certain Lur’e equations. In contrast to previous work we do not assume any condition apart from behavioral stabilizability of the underlying system realization.

Copyright line will be provided by the publisher

1 Introduction

We consider differential-algebraic systems

\[
\begin{align*}
\frac{d}{dt} Ex(t) &= Ax(t) + Bu(t), \\
y(t) &= Cx(t) + Du(t),
\end{align*}
\]

where \(E, A \in \mathbb{K}^{n \times n}\) (for \(\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}\)) are such that the pencil \(sE - A \in \mathbb{K}[s]^{n \times n}\) is regular, i.e., \(\det(sE - A)\) is not the zero polynomial, and \(B \in \mathbb{K}^{n \times m}, C \in \mathbb{K}^{p \times n}, D \in \mathbb{K}^{p \times m}\). The functions \(x : \mathbb{R} \to \mathbb{K}^n, \ u : \mathbb{R} \to \mathbb{K}^m, \) and \(y : \mathbb{R} \to \mathbb{K}^p\) are called (generalized) state, input, and output of the system, respectively. Then the transfer function of (1) is

\[
G(s) = C(sE - A)^{-1}B + D \in \mathbb{K}(s)^{p \times m},
\]

where \(\mathbb{K}(s)\) denotes the field of rational functions with coefficients in \(\mathbb{K}\). Conversely, we call (1) a realization of \(G(s) \in \mathbb{K}(s)^{p \times m}\) if (2) holds true.

In this paper we discuss the construction of inner-outer factorizations of \(G(s)\), that is

\[
G(s) = G_1(s)G_o(s),
\]

where the rational matrix \(G_1(s) \in \mathbb{K}(s)^{p \times q}\) is inner and \(G_o(s) \in \mathbb{K}(s)^{q \times m}\) is outer. Here we call a rational function \(G(s) \in \mathbb{K}(s)^{p \times m}\)

(i) outer if \(p = \text{rank}_{\mathbb{K}(s)} G(s)\) and \(G(s)\) has no zeros in \(\mathbb{C}_+ := \{s \in \mathbb{C} : \Re(s) > 0\}\);

(ii) inner if \(G(s)\) has no poles in \(\mathbb{C}_+\) and \(G^*(-\pi)G(s) = I_m\).

The above factorization plays an important role, e.g., in \(\mathcal{H}_\infty\) control [1].

2 Mathematical Preliminaries

We denote by \(\Sigma_{n,m,p}(\mathbb{K})\) the set of systems (1) with \(E, A \in \mathbb{K}^{n \times n}\) such that the pencil \(sE - A \in \mathbb{K}[s]^{n \times n}\) is regular and \(B \in \mathbb{K}^{n \times m}, C \in \mathbb{K}^{p \times n}, D \in \mathbb{K}^{p \times m}\), and we write \([E, A, B, C, D] \in \Sigma_{n,m,p}(\mathbb{K})\). The set of control systems (1a) with \(E, A\) and \(B\) as above is denoted by \(\Sigma_{n,m}(\mathbb{K})\), and we write \([E, A, B] \in \Sigma_{n,m}(\mathbb{K})\).

The behavior of \([E, A, B] \in \Sigma_{n,m}(\mathbb{K})\) is the set of all solutions of (1a), that is

\[
\mathfrak{B}_{[E,A,B]} := \{(x, u) \in \mathcal{L}^2_{\text{loc}}(\mathbb{R}, \mathbb{K}^n) \times \mathcal{L}^2_{\text{loc}}(\mathbb{R}, \mathbb{K}^m) : \frac{d}{dt}Ex = Ax + Bu\},
\]

where \(\frac{d}{dt}\) denotes the distributional derivative. The behavior of \([E, A, B, C, D] \in \Sigma_{n,m,p}(\mathbb{K})\) is defined by

\[
\mathfrak{B}_{[E,A,B,C,D]} := \{(x, u, y) \in \mathfrak{B}_{[E,A,B]} \times \mathcal{L}^2_{\text{loc}}(\mathbb{R}, \mathbb{K}^p) : y = Cx + Du\}.
\]

Next we consider the notion of behavioral stabilizability [2] which we will directly introduce here in terms of an algebraic characterization [3, Cor. 4.3].

* Corresponding author: e-mail mvoigt@math.tu-berlin.de, phone +49 30 314 24767, fax +49 30 314 79706

Copyright line will be provided by the publisher
Definition 2.1 The system \([E, A, B] \in \Sigma_{n,m,p}(\mathbb{K})\) is called behaviorally stabilizable if
\[
\text{rank } [\lambda E - A \ B] = n \quad \forall \lambda \in \mathbb{C}_+.
\]

Next we introduce the system space \([E, A, B] \in \Sigma_{n,m}(\mathbb{K})\).

Definition 2.2 Let \([E, A, B] \in \Sigma_{n,m}(\mathbb{K})\) be given. Then the system space of \([E, A, B]\) is the smallest subspace \(V^{\text{sys}}_{[E,A,B]} \subseteq \mathbb{K}^{n+m}\) such that for all \((x, u) \in \mathcal{D}_{[E,A,B]}\) we have
\[
\begin{pmatrix}
x(t) \\
u(t)
\end{pmatrix} \in V^{\text{sys}}_{[E,A,B]} \quad \text{for almost all } t \in \mathbb{R}.
\]

For a geometric characterization of \(V^{\text{sys}}_{[E,A,B]}\) we refer to [4].

3 Construction of Inner-Outer Factorizations

We construct inner-outer factorizations of arbitrary rational matrices. The basis for such a construction will be the Lur’e equation
\[
\begin{bmatrix}
A^*XE + E^*XA + C^*C & E^*XB + C^*D \\
B^*XE + D^*C & D^*D
\end{bmatrix} = V^{\text{sys}}_{[E,A,B]} \begin{bmatrix}
K^* \\
L^*
\end{bmatrix}, \quad X = X^*,
\]
where we use
\[
M = \mathcal{V} N \iff v^*(M - N)v = 0 \quad \forall v \in \mathcal{V}
\]
as a notational convention for Hermitian matrices \(M, N \in \mathbb{K}^{n \times n}\) and a subspace \(\mathcal{V} \subseteq \mathbb{K}^n\).

We are particularly interested in stabilizing solutions, i.e., triples \((X, K, L) \in \mathbb{K}^{n \times n} \times \mathbb{K}^{q \times n} \times \mathbb{K}^{q \times m}\) that satisfy (3) and
\[
\text{rank } \begin{bmatrix}
-\lambda E + A & B \\
K
\end{bmatrix} = n + q \quad \forall \lambda \in \mathbb{C}_+.
\]

First we present the general idea for our approach: The Popov function corresponding to the Lur’e equation (3) is
\[
\Phi(s) = \begin{bmatrix}
(sE - A)^{-1}B \\
I_n
\end{bmatrix}^* \begin{bmatrix}
C^*C & C^*D \\
D^*C & D^*D
\end{bmatrix} \begin{bmatrix}
(sE - A)^{-1}B \\
I_n
\end{bmatrix} = G(-\bar{s})^*G(s).
\]

For a stabilizing solution \((X, K, L)\) of (3) we obtain from [4, Rem. 5.7] that \(\Phi(s) = W(-\bar{s})^*W(s)\) for the outer function \(W(s) = K(sE - A)^{-1}B + L\). Assume that an inner-outer factorization \(G(s) = G_1(s)G_0(s)\) with \(G_1(s) \in \mathbb{K}(s)^{p \times d}\) and \(G_0(s) \in \mathbb{K}(s)^{q \times m}\) exists. Then (4) and the property \(G_1(-\bar{s})^*G_1(s) = I_q\) imply that
\[
G(-\bar{s})^*G(s) = G_0(-\bar{s})^*G_1(-\bar{s})^*G_1(s)G_0(s) = G_0(-\bar{s})^*G_0(s).
\]

This justifies the ansatz \(G_0(s) = W(s) = K(sE - A)^{-1}B + L\). The inner factor will be constructed by \(G_1(s) = G(s)G_0(s)^{-}\), where \(G_0(s)^{-}\) denotes a right inverse of \(G_0(s)\). Thereby, we will construct a right inverse of \(G_0(s)\) by \(Z(G_0(s)Z)^{-}\), where \(Z \in \mathbb{K}^{m \times q}\) is a matrix such that \(G_0(s)Z\) is invertible.

The following theorem [5] shows that the idea outlined above can indeed be used to construct inner-outer factorizations.

Theorem 3.1 Let \([E, A, B, C, D] \in \Sigma_{n,m,p}(\mathbb{K})\) behaviorally stabilizable with transfer function \(G(s) \in \mathbb{K}(s)^{p \times m}\) and let \(q = \text{rank}_{\mathbb{K}(s)}(G(s))\). Then there exist a matrix \(Z \in \mathbb{K}^{m \times q}\) with \(\text{rank}_{\mathbb{K}(s)}(G(s)Z) = q\) and a stabilizing solution \((X, K, L)\) of the Lur’e equation (3). Further, an inner-outer factorization is given by \(G(s) = G_1(s)G_0(s)\), where \(G_1(s) \in \mathbb{K}(s)^{p \times q}\) is the transfer function of
\[
[E_0, A_0, B_0, C_0, D_0]:=[E, A, B, K, L] \in \Sigma_{n,m,q}(\mathbb{K}).
\]

References

