4. Exercise "Differential-Algebraic Equations"

(Due date: 05.01.2017)

1. Exercise

Consider the following DAEs:

$$\dot{q} = v \qquad \qquad \dot{q} = v - G^T \eta$$

$$M\dot{v} = Fq - G^T \lambda \qquad (1) \qquad \qquad M\dot{v} = Fq - G^T \lambda \qquad \qquad (2)$$

$$0 = Gq - r \qquad \qquad 0 = Gq - r$$

with $q: \mathbb{I} \to \mathbb{R}^{n_q}, v: \mathbb{I} \to \mathbb{R}^{n_v}, \lambda: \mathbb{I} \to \mathbb{R}^{n_\lambda}$, and $\eta: \mathbb{I} \to \mathbb{R}^{n_\eta}$. M, F and G are matrices of suitable size, with M positive definite and G of full row rank. Let r be a vector of suitable size.

- 1. Show that: $(q^*, v^*, \lambda^*, \eta^*)$ with $\eta^* = 0$ is a solution of (2) if and only if (q^*, v^*, λ^*) is a solution of (1).
- 2. Determine the strangeness index μ of (1) and (2).

2. Exercise

Determine the differentiation index ν_d and an underlying ODE for the following DAEs

(c)

(a)

$$\begin{aligned} \dot{x}_1 &= -x_3 + x_4 & \dot{x}_1 &= -x_3 + x_4 \\ \dot{x}_3 &= -x_1 + x_2 & \dot{x}_4 &= -x_1 + x_2 \\ 0 &= x_1 - p(t) & 0 &= x_1 - p(t) \\ 0 &= x_4 - q(t) & 0 &= x_4 - q(t) \end{aligned}$$

(b)

(d)

$\dot{x}_2 = -x_3 + x_4$	$\dot{x}_2 = -x_3 + x_4$
$\dot{x}_4 = -x_1 + x_2$	$\dot{x}_3 = -x_1 + x_2$
$0 = x_1 - p(t)$	$0 = x_1 - p(t)$
$0 = x_4 - q(t)$	$0 = x_4 - q(t)$

3. Exercise

Consider the linear DAE

$$E\dot{x} = Ax + f(t), \quad E, A \in \mathbb{R}^{n,n}, \ f \in C(\mathbb{I}, \mathbb{R}^n).$$

Let E be symmetric and A positive definite. Show that then the DAE has differentiation index ν_d with $\nu_d \leq 1$.