CONVERGENCE OF A FULL DISCRETIZATION OF QUASI-LINEAR PARABOLIC EQUATIONS IN ISOTROPIC AND ANISOTROPIC ORLICZ SPACES

ETIENNE EMMRICH† AND ANETA WRÓBLEWSKA-KAMIŃSKA‡

Abstract. Convergence of a subsequence of approximate solutions arising from a full discretization is shown for a general class of quasi-linear parabolic problems. The numerical method combines the backward Euler method for the time discretization with a generalized internal approximation scheme for the spatial discretization. The governing monotone elliptic differential operator is described by a nonlinearity that may have anisotropic and nonpolynomial growth but fulfills a coercivity condition in terms of a generalized N-function. If the problem admits a unique solution, which is shown in the case of a strictly monotone nonlinearity and in a class of sufficiently smooth solutions, then the whole sequence of approximate solutions converges. Moreover, an a priori error estimate for the temporal semidiscretization is provided and a numerical illustration is given.

Key words. nonlinear parabolic equation, monotone operator, nonstandard growth condition, Orlicz space, time discretization, internal approximation, finite element method, convergence

AMS subject classifications. 65M12, 35K55, 47H05, 47J35, 65M06, 65M60

DOI. 10.1137/110854928

1. Introduction. We are concerned with the approximation of the initial-boundary value problem for a quasi-linear parabolic equation that reads

\begin{align*}
\frac{\partial u}{\partial t} - \nabla \cdot a(\nabla u) &= f \quad \text{in } Q := \Omega \times (0, T), \\
u &= 0 \quad \text{on } \partial \Omega \times (0, T), \quad u(\cdot, 0) = u_0 \quad \text{in } \Omega.
\end{align*}

(1.1)

Here, $\Omega \subset \mathbb{R}^d$ is a bounded domain with Lipschitz boundary $\partial \Omega$ and $[0, T]$ is the time interval under consideration. For given functions $f : \overline{Q} \rightarrow \mathbb{R}$ and $u_0 : \overline{\Omega} \rightarrow \mathbb{R}$, we look for a solution $u : \overline{Q} \rightarrow \mathbb{R}$. Throughout this paper, we assume that the nonlinearity $a : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is continuous as well as monotone such that

\[(a(\xi) - a(\eta)) \cdot (\xi - \eta) \geq 0 \quad \text{for all } \xi, \eta \in \mathbb{R}^d.\]

Moreover, we assume that there exists an N-function $M : \mathbb{R}^d \rightarrow \mathbb{R}_0^+$ (see Definition 2.1 below) and a constant $\mu \in (0, 1]$ such that

\[a(\xi) \cdot \xi \geq \mu (M(\xi) + M^*(a(\xi))) \quad \text{for all } \xi \in \mathbb{R}^d,
\]

(1.2)

where M^* denotes the conjugate function to M, the dot means the Euclidean inner product, and $|\xi|^2 = \xi \cdot \xi$. Typical examples are (see also [6, 9, 17, 20, 29])

*Received by the editors November 11, 2011; accepted for publication (in revised form) December 26, 2012; published electronically April 4, 2013. This work was supported by Collaborative Research Center 701, which is funded by the DFG (German Research Council).
†Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany (emmrich@math.tu-berlin.de).
‡Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland (a.wroblewska@impan.edu.pl). This author is supported by Polish MN grant IDEAS PLUS ID 2011000661. This author was a Ph.D. student in the International Ph.D. Projects Programme of Foundation for Polish Science within Innovative Economy Operational Programme 2007-2013 (Ph.D. programme: Mathematical Methods in Natural Sciences).
(1) \(a(\xi) = |\xi|^{p-2}\xi \) \((p > 1)\) with \(M(\xi) = \frac{1}{p} |\xi|^p, \ M^*(\eta) = \frac{1}{p} |\eta|^p \ (p + \frac{1}{p} = 1) \), which leads to the \(p \)-Laplacian (including the Laplacian for \(p = 2 \));

(2) \(a(\xi) = |\xi|^{p-1}e^{|\xi|} \) with \(M(\xi) = |\xi|^{1-p} e^{|\xi|} + 1, \ M^*(\eta) = \left(|\xi(\eta)|^2 - |\xi(\eta)| + 1 \right) e^{\xi(\eta)} - 1; \)

(3) \(a(\xi) = \xi \log(|\xi|+1) \) with \(M(\xi) = \frac{1}{2}(|\xi|^2 - 1) \log(|\xi|+1) + \frac{1}{2} |\xi| (2 - |\xi|), \ M^*(\eta) = \frac{1}{2}(|\xi(\eta)|^2 + 1) \log(|\xi(\eta)|+1) - \frac{1}{2} (|\xi(\eta)|(2 - |\xi(\eta)|)); \)

(4) \(a(\xi) = \frac{\xi}{|\xi|} \log(|\xi|+1) + \frac{\xi}{|\xi|+1} \) with \(M(\xi) = |\xi| \log(|\xi|+1), \ M^*(\eta) = \frac{(|\xi(\eta)|^2)}{|\xi(\eta)|+1}; \)

(5) \(a(\xi) = \left[|\xi_1|^{p_1} - 2 \xi_1, |\xi_2|^{p_2} - 2 \xi_2 \right] \) \((1 < p_1, p_2 < \infty)\) for \(\xi = [\xi_1, \xi_2] \in \mathbb{R}^2 \) with \(M(\xi) = \frac{1}{p_1} |\xi_1|^{p_1} + \frac{1}{p_2} |\xi_2|^{p_2}, \ M^*(\eta) = \frac{1}{p_1} |\eta_1|^{p_1} + \frac{1}{p_2} |\eta_2|^{p_2} \left(\frac{1}{p_1} + \frac{1}{p_2} = 1, \frac{1}{p_1} + \frac{1}{q_2} = 1 \right); \)

(6) \(a(\xi) = 2[2\xi_1 - \xi_2, 2\xi_2 - \xi_1] \) for \(\xi = [\xi_1, \xi_2] \in \mathbb{R}^2 \) with \(M(\xi) = \xi_1^2 + \xi_2^2 + (\xi_1 - \xi_2)^2, \ M^*(\eta) = \frac{1}{2} (\eta_1^2 + \eta_2^2 + \eta_2^2); \)

(7) \(a(\xi) = [\xi_1 e^{\xi_1}, \xi_2 e^{\xi_2}] \) for \(\xi = [\xi_1, \xi_2] \in \mathbb{R}^2 \) with \(M(\xi) = \frac{1}{2} e^{\xi_1} + \frac{1}{2} e^{\xi_2} - 1, \ M^*(\eta) = (\xi_1)^2 - \frac{1}{2} e^{\xi_1(\eta)} + (\xi_2(\eta))^2 - \frac{1}{2} e^{\xi_2(\eta)} + 1; \)

where \(\xi(\eta) \) always solves the equation \(\eta = a(\xi(\eta)) \). Whereas the first example is well understood and can be studied by employing the standard theory of monotone operators relying on the Sobolev space \(W_0^{1,p}(\Omega) \), the other examples lead to operators satisfying nonpolynomial or anisotropic growth conditions instead of having the usual \(p \)-structure. These latter examples require another functional setting, namely, to consider monotone operators in (isotropic or anisotropic) Orlicz spaces. Since, in general, Orlicz spaces are neither reflexive nor separable, additional difficulties arise.

Equations of the above type arise, e.g., in fluid dynamics and rheology (see [16, 18]) as well as in electrodynamics (see [4]), where \(u \) is then \(\mathbb{R}^d \)-valued, which still requires further research. Indeed, example (4) appears in the description of Prandtl–Eyring fluids. Note that the same type of equation also arises in image processing with, e.g., \(a(\xi) = \xi / (1 + |\xi|^2) \) or \(a(\xi) = \xi \exp(-|\xi|^2) \) (Perona–Malik equation; see [23]). Unfortunately, the underlying potential then is not convex and thus does not fit into our framework. Also the minimal surface or prescribed mean curvature equation with \(a(\xi) = \xi / \sqrt{1 + |\xi|^2} \) does not fit into our framework since the corresponding potential does not grow superlinearly at infinity.

Existence of global weak solutions (solutions in the sense of distributions) has been shown in [9] if the conjugate of the underlying \(\mathcal{N} \)-function satisfies a \(\Delta_2 \)-condition (see (2.4) below). Similar results under somewhat restrictive assumptions have also been obtained in [11, 24]. More recently, existence has been proved in [17] for the general case avoiding any restrictive growth or \(\Delta_2 \)-condition and allowing anisotropy but for problems with zero right-hand side only. The method of proof relies upon a Galerkin approximation with eigenfunctions of the Laplacian. See also [12] for a similar result, including a uniqueness result but in the isotropic case, and [13] for a generalization of [12] allowing lower order terms but requiring a more restrictive growth condition. For the case that the nonlinearity \(a \) is the gradient of a continuously differentiable potential, existence and uniqueness of the homogeneous problem are also studied in [6]. The method of proof there relies upon a time discretization and considering each time step as the Euler–Lagrange equation for a corresponding variational problem. (The limit of the sequence of approximate solutions is then identified to be the exact solution by testing with the solution itself and employing the classical Minty trick. This is said to be allowed because of an approximation argument, which is, unfortunately, not carried out.)

A main problem, which also arises in our studies, is the fact that the Orlicz space \(L_\mathcal{M}(Q) \) over the space-time cylinder, generated by the \(\mathcal{N} \)-function \(M \), is not isomet-
rically isomorphic to the Orlicz space $L_M(0, T; L_M(\Omega))$ of functions defined on the time interval and taking values in the Orlicz space over the spatial domain except that M is equivalent to some power function (see [9, Proposition 1.3, p. 218]). In the standard functional analytic treatment of parabolic problems with polynomial growth, the Lebesgue space $L^p(Q)$ is isometrically isomorphic to the Bochner–Lebesgue space $L^p(0, T; L^p(\Omega))$ for $p < \infty$, which allows us to reduce the partial differential equation to an operator differential equation for functions in time taking values in an appropriate Banach space of functions in space.

In this paper, we study the convergence of a fully discrete approximation. Apart from the work in [4, 10, 25] on the Galerkin finite element approximation of elliptic problems described by monotone operators in Orlicz spaces, there is, to the best knowledge of the authors, no other study of numerical approximations available, especially not for problems of parabolic type.

In this first attempt to analyze time-dependent problems, we restrict our considerations to the scalar case without nonmonotone perturbations (such as lower order terms). Moreover, to keep the presentation readable, we do not consider the case where a is a Carathéodory function that explicitly depends on (x, t), although we believe that this case can be treated similarly.

Our main result is the convergence of a (sub-)sequence of approximate solutions toward an exact solution. The numerical approximation here comes from combining the backward Euler (or Rothe) method with a generalized internal approximation scheme. This approximation scheme covers the abstract Galerkin method but also standard conforming finite element methods, as we show. The assumptions on the underlying differential operator are as general as in [17] avoiding any restrictive growth or Δ_2-condition and allowing anisotropy. In contrast to [17], we also allow nonzero right-hand-side f in (1.1).

It should be noted that the convergence result provided here also implies existence of a weak solution. We also provide a uniqueness result. In case of uniqueness, the whole sequence of approximate solutions converges. Moreover, we should emphasize that the method of proof here differs from that in [12, 17] not only because of the full discretization. In particular, we use a certain characterization of Orlicz spaces as a weak closure (together with results on mollification and the continuity of the translation) and we omit employing knowledge about the sequence of time derivatives of the approximate solutions. The latter would require we have the boundedness of the sequence of L^2-orthogonal projections onto the finite dimensional subspaces with respect to the operator norm induced by the norm $\| \cdot \|_{2,\Omega} + \| \nabla \cdot \|_{M,\Omega}$, where $\| \cdot \|_{2,\Omega}$ denotes the L^2-norm and $\| \cdot \|_{M,\Omega}$ the Luxemburg norm. This, however, is by no way obvious for an arbitrary internal approximation scheme or a particular finite element method (but was implicitly used in [17] for the special Galerkin approximation employed there). Instead, we employ the centered Steklov average for a regularization in time and avoid compactness arguments of the Lions–Aubin type (that, e.g., have been used in [13]).

We are aware of the fact that it would be desirable to have an analysis at hand for a semi-implicit variant of the time discretization. So far, we are not able to prove convergence for such a method. We also emphasize that error estimates providing convergence rates were not in the scope of this paper since such would require we assume additional regularity of the exact solution, which is, in general, not known even for smooth data. Moreover, available estimates of the interpolation error in [10] require the restrictive Δ_2-condition. Nevertheless, as a first step we provide an optimal order error estimate for the temporal semidiscretization in case that the exact
solution is sufficiently smooth.

The outline of the paper is as follows. In section 2, we introduce the necessary notation, recall basic facts about Orlicz spaces, and prove some auxiliary results. The description of the numerical method, the proof of existence and uniqueness of the numerical solution, and the derivation of an a priori estimates for the fully discrete solution follow in section 3. Convergence toward and thus existence of an exact solution as well as its uniqueness (under additional assumptions) is then shown in section 4. An error estimate for the temporal semidiscretization is provided in section 5. In section 6, we finally illustrate the numerical method for a simple example.

2. Notation and preliminaries.

2.1. General notation. By \(L^p(\Omega) \) \((p \in [1, \infty])\), we denote the usual Lebesgue space, and for \(\mathbb{R}^d \)-valued functions, we write \(L^p(\Omega; \mathbb{R}^d) \), both equipped with the standard norm \(\| \cdot \|_{p,\Omega} \). Moreover, we rely upon the usual notation for Sobolev spaces. In particular, we have \(W^{1,p}(\Omega) = \{ v \in L^p(\Omega) : \nabla v \in L^p(\Omega; \mathbb{R}^d) \} \), and \(W^{1,p}_0(\Omega) \) \((p \in [1, \infty])\) denotes the closure of \(C_c^\infty(\Omega) \) with respect to the \(W^{1,p} \)-norm. Here, \(C_c^\infty(\Omega) \) denotes the space of infinitely differentiable functions with compact support in \(\Omega \). The space of \(m \)-times uniformly continuously differentiable functions is denoted by \(\mathcal{C}^m(\Omega) \) \((m \in \mathbb{N}, \mathcal{C}^0 \equiv \mathcal{C})\). By \(\gamma_0 v \), we denote the trace of \(v : \overline{\Omega} \to \mathbb{R} \) such that \(\gamma_0 v = v \) on \(\partial \Omega \) for smooth \(v \).

For a Banach space \(X \), we denote by \(L^p(0,T;X) \) \((p \in [1, \infty])\) the usual Bochner–Lebesgue space equipped with the standard norm. We recall that \(L^p(0,T;L^p(\Omega)) = L^p_c(Q) \) if \(p < \infty \). Here, we identify the abstract function \(u : [0,T] \to L^p(\Omega) \) with the function \(u : \Omega \to \mathbb{R} \) via \(u(t)(x) = u(x,t) \). The standard norm is then denoted by \(\| u \|_{p,Q} \). The space of functions in \(L^1(0,T;X) \) whose distributional time derivative is again in \(L^1(0,T;X) \) is denoted by \(W^{1,1}(0,T;X) \). By \(\mathcal{C}([0,T];X) \), we denote the usual space of continuous functions \(u : [0,T] \to X \), whereas \(\mathcal{C}_c([0,T];X) \) denotes the space of semicontinuous functions (i.e., continuous with respect to the weak topology in \(X \)). See also [14] for more details. By \(\langle \cdot, \cdot \rangle \), we denote the duality pairing. Finally, \(c \) denotes a generic positive constant.

2.2. Orlicz spaces. In this section, we recall the definition of Orlicz spaces and some of their properties (see, especially, [20] for a very readable introduction as well as [1, 15, 19, 26, 27, 29]). Let us emphasize that our considerations include nonlinearities with anisotropic growth. We therefore rely upon anisotropic Orlicz classes and spaces defined by \(\mathcal{N} \)-functions with vector-valued arguments (see, in particular, [9, 26, 27]).

Definition 2.1 (\(\mathcal{N} \)-function). A function \(M : \mathbb{R}^d \to \mathbb{R} \) is said to be an \(\mathcal{N} \)-function if it satisfies the following conditions:

(i) \(M \) is continuous, \(M(\xi) = 0 \) if and only if \(\xi = 0 \), \(M(\xi) = M(-\xi) \) for all \(\xi \in \mathbb{R}^d \);

(ii) \(M \) is convex;

(iii) \(M \) has superlinear growth such that \(\lim_{|\xi| \to 0} \frac{M(\xi)}{|\xi|} = 0 \), \(\lim_{|\xi| \to \infty} \frac{M(\xi)}{|\xi|} = \infty \).

Some authors prefer the term generalized \(\mathcal{N} \)-function in order to emphasize the dependence on \(\xi \) and not only on \(|\xi| \). Note that (i) and (ii) imply \(M(\xi) \geq 0 \) for all \(\xi \in \mathbb{R}^d \). Because of the anisotropic character, the function \(M \) need not be a function that is increasing with respect to the components of its vector-valued argument (see, e.g., example (6) in the introduction).

For an \(\mathcal{N} \)-function \(M \), we denote by \(M^* \) the conjugate function given by the Legendre-Fenchel transform \(M^*(\eta) = \sup_{\xi \in \mathbb{R}^d} (\xi \cdot \eta - M(\xi)) \) \((\eta \in \mathbb{R}^d)\). The conjugate function \(M^* \) is also an \(\mathcal{N} \)-function (see [26]). Moreover, there holds \(M^{**} = M \). An
important tool in deriving a priori estimates will be the Fenchel–Young inequality

\begin{equation}
|\xi \cdot \eta| \leq M(\xi) + M^*(\eta) \quad \text{for all } \xi, \eta \in \mathbb{R}^d. \tag{2.1}
\end{equation}

The anisotropic Orlicz class \(\mathcal{L}_M(\Omega; \mathbb{R}^d) \) is the set of all (equivalence classes of almost everywhere equal) measurable functions \(\xi: \Omega \to \mathbb{R}^d \) such that

\[\rho_{M,\Omega}(\xi) := \int_{\Omega} M(\xi(x)) \, dx < \infty. \]

Although \(\mathcal{L}_M(\Omega; \mathbb{R}^d) \) is a convex set it may not be a linear space. The mapping \(\rho_{M,\Omega} \) is a modular in the sense of [20, p. 208].

Since the function \(M: \mathbb{R}^d \to \mathbb{R} \) is continuous, \(\xi = \xi(x) \in L^\infty(\Omega; \mathbb{R}^d) \) implies \(x \mapsto M(\xi(x)) \in L^\infty(\Omega) \), which shows that \(\mathcal{L}_M(\Omega; \mathbb{R}^d) \subseteq L^\infty(\Omega; \mathbb{R}^d) \).

The anisotropic Orlicz space \(L_M(\Omega; \mathbb{R}^d) \) is defined as the linear hull of \(\mathcal{L}_M(\Omega; \mathbb{R}^d) \).

It is a Banach space with respect to the Luxemburg norm

\[\|\xi\|_{M,\Omega} := \inf \left\{ \lambda > 0 : \int_{\Omega} M \left(\frac{\xi(x)}{\lambda} \right) \, dx \leq 1 \right\}; \]

the infimum is attained if \(\xi \neq 0 \). In general, \(L_M(\Omega; \mathbb{R}^d) \) is neither separable nor reflexive. Note that \(\rho_{M,\Omega}(\xi) = \|\xi\|_{M,\Omega} \) if \(\|\xi\|_{M,\Omega} \leq 1 \), \(\rho_{M,\Omega}(\xi) \geq \|\xi\|_{M,\Omega} \) if \(\|\xi\|_{M,\Omega} > 1 \) for all \(\xi \in L_M(\Omega; \mathbb{R}^d) \), and thus \(\|\xi\|_{M,\Omega} \leq \rho_{M,\Omega}(\xi) + 1 \). Moreover, if \(\xi \in L_M(\Omega; \mathbb{R}^d) \), then there exists \(\lambda > 0 \) such that \(\rho_{M,\Omega}(\xi/\lambda) < \infty \). Finally, because of the superlinear growth of \(M \), there holds

\begin{equation}
L_M(\Omega; \mathbb{R}^d) \subseteq L^1(\Omega; \mathbb{R}^d). \tag{2.2}
\end{equation}

This can be seen from the following observations. Let \(\xi \in L_M(\Omega; \mathbb{R}^d) \), \(\xi \neq 0 \), and set \(\lambda = \|\xi\|_{M,\Omega} > 0 \) such that \(\rho_{M,\Omega}(\xi/\lambda) \leq 1 \). We set

\[\Omega_1 := \left\{ x \in \Omega : M \left(\frac{\xi(x)}{\lambda} \right) \geq \frac{|\xi(x)|}{\lambda} \right\}, \quad \Omega_2 := \Omega \setminus \Omega_1. \]

Since \(M(\eta)/|\eta| \to \infty \) as \(|\eta| \to \infty \), there exists \(C > 0 \) such that \(|\xi(x)| \leq C \) for all \(x \in \Omega_2 \). We therefore find

\begin{align*}
\int_{\Omega} |\xi(x)| \, dx &= \lambda \int_{\Omega_1} \frac{|\xi(x)|}{\lambda} \, dx + \lambda \int_{\Omega_2} |\xi(x)| \, dx \\
&\leq \lambda \rho_{M,\Omega} \left(\frac{\xi}{\lambda} \right) + C |\Omega_2| \leq \|\xi\|_{M,\Omega} + C |\Omega_2| < \infty.
\end{align*}

By definition, the anisotropic Orlicz class and space coincide with the isotropic Orlicz class and space, respectively, if the \(\mathcal{M} \)-function \(M = M(\xi) \) is a radial function.

Let us denote by \(E_M(\Omega; \mathbb{R}^d) \) the closure with respect to the Luxemburg norm of the set of bounded measurable functions defined on \(\Omega \). It turns out that \(E_M(\Omega; \mathbb{R}^d) \) is the largest linear space contained in the Orlicz class \(\mathcal{L}_M(\Omega; \mathbb{R}^d) \) such that

\[E_M(\Omega; \mathbb{R}^d) \subseteq \mathcal{L}_M(\Omega; \mathbb{R}^d) \subseteq L_M(\Omega; \mathbb{R}^d) \]

with, in general, strict inclusion. From the equivalence of the Luxemburg and the Orlicz norm

\[\|\xi\|_{M,\Omega} := \sup \left\{ \int_{\Omega} \xi \cdot \eta \, dx : \eta \in \mathcal{L}_{M^*}(\Omega; \mathbb{R}^d) \text{ with } \rho_{M^*,\Omega}(\eta) \leq 1 \right\}, \]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
one immediately finds that $L^\infty(\Omega; \mathbb{R}^d)$ is continuously embedded in $E_M(\Omega; \mathbb{R}^d)$.

The space $E_M(\Omega; \mathbb{R}^d)$ is separable and $\mathcal{C}_c^\infty(\Omega; \mathbb{R}^d)$ is dense in $E_M(\Omega; \mathbb{R}^d)$. The space $L_M(\Omega; \mathbb{R}^d)$ is the dual of $E_M(\Omega; \mathbb{R}^d)$, and the duality pairing is given by

$$\langle \xi, \eta \rangle = \int_\Omega \xi \cdot \eta \, dx, \quad \xi \in L_M(\Omega; \mathbb{R}^d), \ \eta \in E_M^*(\Omega; \mathbb{R}^d).$$

At this point, we may recall the generalized Hölder inequality

$$\int_\Omega \xi \cdot \eta \, dx \leq 2 \|\xi\|_{M, \Omega} \|\eta\|_{M^*, \Omega} \quad \text{for all } \xi \in L_M(\Omega; \mathbb{R}^d), \ \eta \in L_{M^*}(\Omega; \mathbb{R}^d),$$

which shows that $\xi \cdot \eta \in L^1(\Omega)$ if $\xi \in L_M(\Omega; \mathbb{R}^d)$ and $\eta \in L_{M^*}(\Omega; \mathbb{R}^d)$. (The factor 2 is due to the use of the Luxemburg norm instead of the Orlicz norm.)

It is worth mentioning that for any $\xi \in L_M(\Omega; \mathbb{R}^d)$

$$\lim_{k \to \infty} \int_\Omega (\xi - \xi_k) \cdot \eta \, dx = 0 \quad \text{for all } \eta \in L_{M^*}(\Omega; \mathbb{R}^d),$$

where $\xi_k(x) = \xi(x)$ if $|\xi(x)| \leq k$ and $\xi_k(x) = 0$ otherwise. This shows that $L_M(\Omega; \mathbb{R}^d)$ is the closure of $E_M(\Omega; \mathbb{R}^d)$ with respect to the weak convergence in $E_M(\Omega; \mathbb{R}^d)$ (see, e.g., [19, p. 131]). It will later be important to see that (2.3) holds not only for all $\eta \in E_M(\Omega; \mathbb{R}^d)$ but for all $\eta \in L_{M^*}(\Omega; \mathbb{R}^d)$. This is seen as follows. Because of the generalized Hölder inequality, we already know that $\xi \cdot \eta \in L^1(\Omega)$. Therefore,

$$\int_\Omega (\xi - \xi_k) \cdot \eta \, dx = \int_{\Omega_k} \xi \cdot \eta \, dx \quad \text{with } \Omega_k := \{x \in \Omega : |\xi(x)| > k\}$$

is well-defined. In view of Chebyshev’s inequality, we have that $|\Omega_k| \leq \frac{1}{k} \|\xi\|_{1, \Omega}$. The absolute continuity of the integral over the integrable function $\xi \cdot \eta$ finally proves

$$\int_{\Omega_k} \xi \cdot \eta \, dx \to 0 \quad \text{as } k \to \infty.$$

If the \mathcal{N}-function M satisfies the so-called Δ_2-condition, i.e., if there exists $c > 0$ such that

$$M(2\xi) \leq cM(\xi) \quad \text{for all } \xi \in \mathbb{R}^d,$$

then $L_M(\Omega; \mathbb{R}^d) = E_M(\Omega; \mathbb{R}^d) = L_M^*(\Omega; \mathbb{R}^d)$ (see [1, 20, 27]). The Δ_2-condition is, however, rather restrictive and is, e.g., not fulfilled for examples (2) and (7) in the introduction.

In what follows, we also consider Orlicz classes and spaces over the space-time cylinder Q. (The definitions and results from above are the same; just replace Ω by Q.) We emphasize again that $L_M(Q) \neq L_M(0, T; L_M(\Omega))$ except that M is equivalent to some power function (see [9, Proposition 1.3, p. 218]).

2.3. Preliminary results. In this section, we summarize a few preliminary results such as the weak sequential lower semicontinuity of the modular with respect to the weak convergence in $L^1(\Omega; \mathbb{R}^d)$ and an approximation result.

Lemma 2.2. Let $\{\xi_\ell\} \subset \mathcal{L}_M(Q; \mathbb{R}^d)$ be a bounded sequence, i.e., there exists $C > 0$ such that $p_{M,Q}(\xi_\ell) \leq C$ for all $\ell \in \mathbb{N}$. Then there exists $\xi \in \mathcal{L}_M(Q; \mathbb{R}^d)$
and a subsequence, denoted by \(\ell' \), such that \(\xi_{\ell'} \to \xi \) in \(L^1(Q; \mathbb{R}^d) \) and \(\rho_{M,Q}(\xi) \leq \liminf_{\ell \to \infty} \rho_{M,Q}(\xi_{\ell}) \).

Proof. In a first step, we prove that the sequence \(\{\xi_{\ell}\} \) is weakly relatively compact in \(L^1(Q; \mathbb{R}^d) \). Since \(\mathcal{Z}_M(Q; \mathbb{R}^d) \subseteq L^1(Q; \mathbb{R}^d) \) (see (2.2)) and in view of the Dunford–Pettis theorem (see, e.g., [2, Theorem 2.4.5]), it remains to prove equi-integrability of the sequence. This, however, follows from a result analogous to the de la Vallée–Poussin theorem, and we closely follow [2, Theorem 2.4.4, p. 58]. Since \(M \) has superlinear growth, there exists for every \(K > 0 \) a constant \(C_K > 0 \) such that

\[
0 \leq |\xi| \leq \frac{M(\xi)}{K} + C_K \quad \text{for all } \xi \in \mathbb{R}^d.
\]

Let \(A \subseteq Q \) be a measurable subset with measure \(|A| \). Then for all \(\ell \in \mathbb{N} \)

\[
\int_A |\xi_{\ell}(x)| \, dx \leq \frac{1}{K} \int_A M(\xi_{\ell}(x)) \, dx + C_K |A| \leq \frac{1}{K} \rho_{M,Q}(\xi_{\ell}) + C_K |A| \leq \frac{C}{K} + C_K |A|.
\]

For \(A = \Omega \), this shows the boundedness of the sequence \(\{\xi_{\ell}\} \) in \(L^1(Q; \mathbb{R}^d) \). Let \(\varepsilon > 0 \) be arbitrary and set \(K = 2C/\varepsilon, \delta = \varepsilon/(2C_K) \). We then obtain for any \(A \) with \(|A| < \delta \)

\[
\int_A |\xi_{\ell}(x)| \, dx \leq \frac{\varepsilon}{2} \left(1 + \frac{|A|}{\delta} \right) < \varepsilon,
\]

which finally proves equi-integrability. Hence, a subsequence of \(\{\xi_{\ell}\} \) converges weakly in \(L^1(Q; \mathbb{R}^d) \) toward an element \(\xi \in L^1(Q; \mathbb{R}^d) \).

In a second step, we show the weak sequential lower semicontinuity of the modular in \(L^1(Q; \mathbb{R}^d) \). This, however, is an immediate consequence of the convexity and continuity of \(M = M(\xi) \) together with [2, Theorem 13.1.1, p. 498] (see also [8, Theorem 3.20, p. 94]) upon noting that \(M(\xi) \geq \eta \cdot \xi - M^*(\eta) \) for any \(\eta \in \mathbb{R}^d \) and all \(\xi \in \mathbb{R}^d \). It also proves \(\xi \in \mathcal{Z}_M(Q; \mathbb{R}^d) \).

Unfortunately, the method of truncation as employed in (2.3) is not always appropriate when working with gradients. We, therefore, provide the following result. Let

\[
J_0(x,t) := \begin{cases} \c_0 \exp \left(-\frac{1}{1 - |x|^2 - t^2} \right) & \text{if } |x|^2 + t^2 < 1, \\ 0 & \text{otherwise,} \end{cases}
\]

where \(\c_0 > 0 \) is such that \(\int_{\mathbb{R}^d \times \mathbb{R}} J_0(x,t) \, dxdt = 1 \), and set for sufficiently small \(\delta > 0 \)

\[
J_{\delta}(x,t) = \delta^{-(d+1)} J_0(\delta^{-1} x, \delta^{-1} t), \quad (x,t) \in \mathbb{R}^d \times \mathbb{R}.
\]

For any locally integrable function \(u = u(x,t) \), the mollification \(J_\delta \ast u \) is then a smooth function with compact support on the ball with \(|x|^2 + t^2 \leq \delta^2 \).

Lemma 2.3. Let \(w \in \mathcal{W} := \{ w \in W^{1,1}(0,T; L^2(\Omega)) : \nabla w \in \mathcal{Z}_M(Q; \mathbb{R}^d), \gamma_0 w(\cdot, t) = 0 \text{ for almost all } t \in (0,T) \} \). For any \(\varepsilon > 0 \) there is then a smooth function \(w_\varepsilon \), which vanishes at \(\partial \Omega \times [0,T] \) such that

\[
\|w_\varepsilon - w\|_{W^{1,1}(0,T; L^2(\Omega))} < \frac{\varepsilon}{2}
\]

and such that for all \(\eta \in L_M(\mathbb{R}^d) \)

\[
\left| \int_Q \nabla w_\varepsilon \cdot \eta \, dxdt - \int_Q \nabla w \cdot \eta \, dxdt \right| < \frac{\varepsilon}{2}.
\]
Proof. Note that \(W^{1,1}(0, T; L^2(\Omega)) \) is continuously embedded in \(\mathcal{C}([0, T]; L^2(\Omega)) \). Moreover, since \(\nabla w \in \mathcal{L}_M(Q; \mathbb{R}^d) \subset L^1(0, T; L^1(\Omega)) \), the trace \(\gamma_0 w(\cdot, t) \) is well-defined for almost all \(t \in (0, T) \). The proof follows, in particular, from the continuity of mollification and translation of a function in \(L_M(Q; \mathbb{R}^d) \) with respect to the weak convergence in \(E_M(Q; \mathbb{R}^d) \) (see [15, Lemmas 1.5, 1.6] and [9, Proposition 1.2]) together with standard arguments.

Let \(\varepsilon > 0 \). Then there is \(n \in \mathbb{N} \) such that

\[
\|T_n(w) - w\|_{W^{1,1}(0, T; L^2(\Omega))} < \frac{\varepsilon}{4},
\]

where for \((x, t) \in \overline{Q} \)

\[
T_n(w)(x, t) := \begin{cases}
 w(x, t) & \text{if } |w(x, t)| \leq n, \\
 n & \text{if } w(x, t) > n, \\
 -n & \text{if } w(x, t) < -n.
\end{cases}
\]

In order to prove (2.5), we recall that \(w \in \mathcal{C}([0, T]; L^2(\Omega)) \) and that, for each \(t \in [0, T] \), the set \(\Omega_n(t) := \{ x \in \Omega : |w(x, t)| > n \} \) is measurable with measure \(\|\Omega_n(t)\| \leq \frac{1}{4} \|w\|_{L^2(\Omega)}^2 \). An application of Lebesgue’s theorem on dominated convergence then shows, in particular, that

\[
\int_0^T \left(\int_{\Omega_n(t)} |\partial_t w(x, t)|^2 \, dx \right)^{1/2} \, dt \to 0 \text{ as } n \to \infty.
\]

Note that the truncation above is in \(L^\infty(Q) \subset L_M(Q) \). Obviously, \(\gamma_0[T_n(w)](\cdot, t) = 0 \) for almost all \(t \in (0, T) \). Furthermore, we have \(|\nabla T_n(w)|(x, t) = \nabla w(x, t) \) if \(|w(x, t)| \leq n \) and \(|\nabla T_n(w)|(x, t) = 0 \) otherwise.

Since \(\nabla w \cdot \eta \in L^1(Q) \) for any \(\eta \in L_M(Q; \mathbb{R}^d) \), the absolute continuity of the integral also shows (using Chebyshev’s inequality and the same argumentation as earlier) for sufficiently large \(n \) that

\[
\left| \int_Q (\nabla T_n(w) - \nabla w) \cdot \eta \, dx \, dt \right| < \frac{\varepsilon}{4}.
\]

Since \(\Omega \) is a Lipschitz domain and \(\partial \Omega \) is compact, there is a finite number of points \(x^j \in \partial \Omega \), radii \(r^j > 0 \), and Lipschitz continuous functions \(\lambda^j : \mathbb{R}^{d-1} \to \mathbb{R} \) (\(j = 1, 2, \ldots, J \)) such that—up to a rigid motion if necessary

\[
\Omega \cap \Omega_j = \{ x = [x_1, \ldots, x_{d-1}, x_d] \in \Omega_j : x_d < \lambda^j(x_1, \ldots, x_{d-1}) \},
\]

where \(\Omega_j \subset \mathbb{R}^d \) denotes the open ball of radius \(r^j \) with origin \(x^j \). For sufficiently small \(\delta_0 > 0 \), we may also assume that \(\{ \Omega_j \}_{j=0}^J \) with \(\Omega_0 := \{ x \in \Omega : \text{dist}(x, \partial \Omega) > \delta_0 \} \) is an open cover of \(\overline{\Omega} \). Let \(\{ \chi_j \}_{j=0}^J \) be a smooth partition of unity for \(\overline{\Omega} \) subordinate to this open cover.

For sufficiently small \(r > 0 \), the intervals \(I_0 = (r/2, T - r/2), I_1 = (-r, r), \) and \(I_2 = (T - r, T + r) \) build an open cover of \([0, T] \). Let \(\{ \zeta_k \}_{k=0}^J \) be a smooth partition of unity for \([0, T] \) subordinate to this open cover.

It is clear that \(\{ \Omega_j \times I_k \}_{j=0, k=0}^{J, 2} \) is an open cover of \(\overline{Q} \) and that \(\{ \chi_j \zeta_k \}_{j=0, k=0}^{J, 2} \) is a smooth partition of unity subordinate to this open cover. In particular, we have \(T_n(w) = \sum_{j, k} w_{jk} \), where \(w_{jk} := \chi_j \zeta_k T_n(w) \), and \(\text{supp } w_{jk} \subset \Omega_j \times I_k \).
We observe that \(w_{00} \in W^{1,1}(0, T; L^2(\Omega)) \) with \(\nabla w_{00} = \nabla \chi_0 \zeta_0 T_n(w) + \chi_0 \zeta_0 \nabla T_n(w) \in L_M(Q; \mathbb{R}^d) \) and \(\text{supp} \ w_{00} \subset Q \). The mollification is continuous in \(W^{1,1}(0, T; L^2(\Omega)) \) with respect to the strong convergence, which can be shown by standard arguments (employing, in particular, the continuity of the translation in \(L^1(0, T; L^2(\Omega)) \), which follows from Lusin’s theorem). Moreover, the mollification of a function in the Orlicz space \(L_M(Q; \mathbb{R}^d) \) is continuous with respect to the weak convergence in \(E_M(Q; \mathbb{R}^d) \). There exists, therefore, a sufficiently small number \(\delta_{00} > 0 \) such that

\[
\| J_{\delta_{00}} \ast w_{00} - w_{00} \|_{W^{1,1}(0, T; L^2(\Omega))} < \frac{\varepsilon}{12(J + 1)}
\]

and such that for all \(\eta \in L_{M^*}(Q; \mathbb{R}^d) \)

\[
\left| \int_Q (\nabla (J_{\delta_{00}} \ast w_{00}) - \nabla w_{00}) \cdot \eta \, dxdt \right| < \frac{\varepsilon}{12(J + 1)}.
\]

Here we have also used that \(\nabla (J_{\delta_{00}} \ast T_n(w)) = \nabla J_{\delta_{00}} \ast T_n(w) \in E_M(Q; \mathbb{R}^d) \).

For \((j, k) \neq (0, 0) \), we observe the following. Since the translation is continuous in \(W^{1,1}(0, T; L^2(\Omega)) \) with respect to the strong convergence and continuous in \(L_M(Q; \mathbb{R}^d) \) with respect to the weak convergence in \(E_M(Q; \mathbb{R}^d) \) and since translation and derivative commute, there exist sufficiently small numbers \(\delta_j > 0 \) and \(\tau_k > 0 \) such that

\[
\| \bar{w}_{jk} - w_{jk} \|_{W^{1,1}(0, T; L^2(\Omega))} < \frac{\varepsilon}{24(J + 1)}
\]

and such that for all \(\eta \in L_{M^*}(Q; \mathbb{R}^d) \)

\[
\left| \int_Q (\nabla \bar{w}_{jk} - \nabla w_{jk}) \cdot \eta \, dxdt \right| < \frac{\varepsilon}{24(J + 1)},
\]

where \(\bar{w}_{jk}(x_1, \ldots, x_{d-1}, x_d, t) := \bar{w}_{jk}(x_1, \ldots, x_{d-1}, x_d + \delta_j, t - (-1)^k \tau_k) \) for \((x, t) \in \mathbb{R}^d \times \mathbb{R} \), and where \(\bar{w}_{jk} \) is the extension of \(w_{jk} \) by zero outside \(Q \). Note that the translation with respect to space is inward, whereas the translation with respect to time is outward. This takes into account that \(T_n(w) \) and thus \(w_{jk} \) has vanishing trace at \(\partial \Omega \). By construction, the restriction of \(\bar{w}_{jk} \) to \(K \times [-\tau_1, T + \tau_2] \) for any compact subset \(K \subset \mathbb{R}^d \) has the same regularity as \(w \) on \(\overline{Q} \), and supp \(\bar{w}_{jk} \subset \Omega \times I_k' \), where \(I_1' = [-\tau_1, r - \tau_1] \) and \(I_2' = [T - r + \tau_2, T + \tau_2] \).

There also exist sufficiently small numbers \(\delta_{jk} > 0 \) such that

\[
\| J_{\delta_{jk}} \ast \bar{w}_{jk} - \bar{w}_{jk} \|_{W^{1,1}(0, T; L^2(\Omega))} < \frac{\varepsilon}{24(J + 1)}
\]

and such that for all \(\eta \in L_{M^*}(Q; \mathbb{R}^d) \)

\[
\left| \int_Q (\nabla (J_{\delta_{jk}} \ast \bar{w}_{jk}) - \nabla \bar{w}_{jk}) \cdot \eta \, dxdt \right| < \frac{\varepsilon}{24(J + 1)}.
\]

Putting it altogether shows (with the convention \(\bar{w}_{00} = w_{00} \)) that \(w_c := \sum_{j,k} J_{\delta_{jk}} \ast \bar{w}_{jk} \) satisfies the asserted estimates. Moreover, the restriction of \(w_c \) to \(\overline{Q} \) vanishes at \(\partial \Omega \times [0, T] \) because of supp \(\bar{w}_{jk} \subset \Omega \times I_k' \).
3. A full discretization. In this section, we describe the numerical method that combines a generalized internal approximation scheme (such as a Galerkin scheme or a conforming finite element method; see [28]) for the spatial discretization with the backward Euler scheme for the temporal discretization.

3.1. Discretization. We consider an equidistant time grid: For \(N \in \mathbb{N} (N \geq 1)\), let \(\tau = T/N\) and \(t_n = n\tau\) \((n = 0, 1, \ldots, N)\). Moreover, we consider a generalized internal approximation scheme from finite elements.

\[V := \{ v \in L^2(\Omega) : \nabla v \in E_M(\Omega; \mathbb{R}^d), \gamma_0 v = 0 \}, \quad \|v\|_V := \|v\|_{2,\Omega} + \|\nabla v\|_{M,\Omega}, \]

which is given by a sequence of (not necessarily nested) finite dimensional subspaces \(V_m \subset V\) \((m \in \mathbb{N})\) and restriction operators \(R_m : V \rightarrow V_m\) such that for any sequence \(\{m_\ell\}_{\ell \in \mathbb{N}}\) with \(m_\ell \rightarrow \infty\) as \(\ell \rightarrow \infty\) there holds

\[R_m v \rightarrow v \quad \text{in} \quad V \quad \text{as} \quad \ell \rightarrow \infty \quad \text{for all} \quad v \in V. \]

Since \(V\) is a separable Banach space, there always exists a Galerkin basis and thus an internal approximation scheme for \(V\). Note that it suffices if the restriction operators are defined on (and the strong convergence takes place for) a dense subset of \(V\) (see, e.g., [28, p. 25f]).

Example 3.1 (finite element approximation). We briefly describe how to construct a generalized internal approximation scheme that satisfies (3.1) from finite elements. Let \(\{V_m\}_{m \in \mathbb{N}}\) be a sequence of finite element spaces such that \(V_m \subset W^{1,\infty}(\Omega)\) and let \(I_m\) denote the corresponding global interpolation operator (see, e.g., [7, section 12]). We assume that \(I_m\) can be defined at least on \(C^2(\overline{\Omega})\) and that

\[\|I_m v - v\|_{W^{1,\infty}(\Omega)} \rightarrow 0 \quad \text{as} \quad \ell \rightarrow \infty \quad \text{for all} \quad v \in C^2(\overline{\Omega}) \]

for any sequence \(\{m_\ell\}_{\ell \in \mathbb{N}}\) with \(m_\ell \rightarrow \infty\) as \(\ell \rightarrow \infty\), which implies

\[\|I_m v - v\|_V \rightarrow 0 \quad \text{as} \quad \ell \rightarrow \infty \quad \text{for all} \quad v \in C^2(\overline{\Omega}). \]

This is, e.g., fulfilled for conforming \(\mathcal{P}^1\) (or rectangular \(\mathcal{Q}^1\)) elements corresponding to a regular affine family of triangulations of a polyhedral domain \(\Omega\) (or a domain \(\Omega\) that is the union of \(d\)-dimensional rectangles); see [5, Theorems 4.4.20, 4.6.14], [7, Theorem 16.2].

For the construction of the restriction operators \(R_m : V \rightarrow V_m\), we follow [28, p. 28]). If \(v \in C^2(\overline{\Omega})\), then \(R_m v := I_m v\) for all \(m \in \mathbb{N}\). Otherwise, there is a sequence \(\{v_n\}_{n \in \mathbb{N}} \subset C^2(\overline{\Omega})\) such that \(\|v - v_n\|_V < 1/n\) (note that \(C^2(\overline{\Omega})\) is dense in \(V\)) and a sequence \(\{m_n\}_{n \in \mathbb{N}} \subset \mathbb{N}\) such that \(\|I_{m_n} v_n - v_n\|_V < 1/n\) for all \(m \geq m_n\). We may suppose that \(\{m_n\}\) is increasing. We now set \(R_m v := I_m v_n\) if \(m_n \leq m < m_{n+1}\). It then follows \(\|R_m v - v\|_V < 2/n\), which shows (3.1).

For another construction of restriction operators and for estimates of the interpolation error assuming the \(\Delta_2\)-condition, we refer to [10].

The numerical method under consideration now reads as follows: Find \(\{u^n\}_{n=1}^{N} \subset V_m\) such that for \(n = 1, 2, \ldots, N\)

\[\int_{\Omega} \left(\frac{u^n - u^{n-1}}{\tau} v + a(\nabla u^n) \cdot \nabla v \right) \, dx = \int_{\Omega} f(\cdot, t_n) v \, dx \quad \text{for all} \quad v \in V_m. \]

Here, \(u^0 \in V_m\) denotes a suitable approximation of the initial datum \(u_0 \in L^2(\Omega)\). Moreover, we have assumed that \(f\) is continuous with respect to time. If this is not the case, one may work with \(f^n = \frac{1}{\tau} \int_{t_{n-1}}^{t_n} f(\cdot, t) dt\) \((n = 1, 2, \ldots, N)\) instead of \(f(\cdot, t_n)\).
3.2. Solvability. We are now going to show that there exists a unique solution to the numerical scheme (3.2).

Theorem 3.2 (existence and uniqueness of discrete solution). Let \(u^0 \in V_m \) and \(f \in \mathcal{C}([0,T]; L^2(\Omega)) \). Then there exists a unique solution \(\{u^n\}_{n=1}^N \subset V_m \) to (3.2).

The proof relies upon the following auxiliary result, which is a direct consequence of Brouwer’s fixed point theorem (see, e.g., [14, p. 74]).

Lemma 3.3. For some \(R > 0 \), let \(h : \overline{B}(0,R) \to \mathbb{R}^m \) be continuous, where \(\overline{B}(0,R) \subset \mathbb{R}^m \) denotes the closed ball with respect to some norm \(\| \cdot \|_\mathbb{R}^m \) on \(\mathbb{R}^m \). If

\[
 h(v) \cdot v \geq 0 \quad \text{for all } v \in \mathbb{R}^m \text{ with } \|v\|_{\mathbb{R}^m} = R,
\]

then there exists \(\hat{v} \in \overline{B}(0,R) \) such that \(h(\hat{v}) = 0 \).

Proof of Theorem 3.2. We prove existence and uniqueness step by step. Let us assume we are given \(u^{n-1} \in L^2(\Omega) \). We then show existence of a unique \(u^n \in V_m \) satisfying (3.2).

Since \(V_m \) is finite dimensional, we have \(V_m = \text{span}\{\varphi_1, \varphi_2, \ldots, \varphi_m\} \) for a suitable set of basis functions. (Without loss of generality, we may assume that the index \(m \) in the notation of \(V_m \) equals the dimension of \(V_m \).) We then have a one-to-one mapping between \(V_m \) and \(\mathbb{R}^m \) given by

\[
 v = [v_1, v_2, \ldots, v_m] \in \mathbb{R}^m \quad \mapsto \quad V_m \ni v = \sum_{j=1}^m v_j \varphi_j,
\]

and \(\|v\|_{\mathbb{R}^m} := \|v\|_{2,\Omega} \) defines a norm on \(\mathbb{R}^m \). We now define the mapping \(h \) via

\[
 h_i(v) := \int_{\Omega} \left(\frac{v - u^{n-1}}{\tau} \varphi_i + a(\nabla v) \cdot \nabla \varphi_i - f(\cdot, t_n) \varphi_i \right) dx.
\]

Obviously, any solution \(u^n \in V_m \) corresponds to a zero \(u^n \) of \(h \) and vice versa.

Due to the continuity of \(a \), the function \(h : \mathbb{R}^m \to \mathbb{R}^m \) is continuous. Moreover, the Cauchy–Schwarz inequality and the coercivity assumption (1.2) imply that

\[
 h(v) \cdot v = \int_{\Omega} \left(\frac{v - u^{n-1}}{\tau} v + a(\nabla v) \cdot \nabla v - f(\cdot, t_n) v \right) dx
 \geq \frac{1}{\tau} \|v\|_{2,\Omega} \left(\|v\|_{2,\Omega} - \|u^{n-1}\|_{2,\Omega} - \tau \|f\|_{\mathcal{C}([0,T]; L^2(\Omega))} \right).
\]

Taking now \(R > \|u^{n-1}\|_{2,\Omega} + \tau \|f\|_{\mathcal{C}([0,T]; L^2(\Omega))} \), the assumptions of Lemma 3.3 are fulfilled, and there exists a zero of \(h \). This zero, however, solves (3.2) at level \(n \).

Let \(v, w \in V_m \) be two solutions of (3.2) at level \(n \). Then, in view of the monotonicity of \(a \), we have

\[
 \frac{1}{\tau} \|v - w\|_{2,\Omega}^2 = \int_{\Omega} \left(\frac{v - u^{n-1}}{\tau} - \frac{w - u^{n-1}}{\tau} \right) (v - w) dx
 = - \int_{\Omega} (a(\nabla v) - a(\nabla w)) (\nabla v - \nabla w) dx \leq 0,
\]

which proves uniqueness. \(\square \)
3.3. A priori estimates. The following a priori estimates are the essential prerequisite for the proof of convergence.

Theorem 3.4 (uniform boundedness of discrete solution). Let \(u^0 \in V_m \) and \(f \in C([0, T]; L^2(\Omega)) \). Let \(\{u^n\} \subset V_m \) be the solution to (3.2). Let \(\tau \leq \tau_0 < 1 \). Then there holds for all \(n = 1, 2, \ldots, N \)

\[
\|u^n\|^2_{2, \Omega} + \sum_{j=1}^{n} \|u^j - u^{j-1}\|^2_{2, \Omega} + \tau \sum_{j=1}^{n} \int_{\Omega} M(\nabla u^j) \, dx + \tau \sum_{j=1}^{n} \int_{\Omega} M^*(a(\nabla u^j)) \, dx \\
\leq c \left(\|u^0\|^2_{2, \Omega} + \|f\|^2 C([0, T]; L^2(\Omega)) \right),
\]

where \(c > 0 \) depends on \(\mu, T, \) and \(\tau_0 \).

Proof. We take \(v = u^n \) in (3.2), employ the relation

\[
(a - b) \cdot a = \frac{1}{2} (a^2 - b^2 + (a - b)^2), \quad a, b \in \mathbb{R},
\]

for the discrete time derivative, invoke the coercivity assumption (1.2), and use the Cauchy–Schwarz and Young inequality. This leads to

\[
\frac{1}{2\tau} \left(\|u^n\|^2_{2, \Omega} - \|u^{n-1}\|^2_{2, \Omega} + \|u^n - u^{n-1}\|^2_{2, \Omega} \right) \\
+ \int_{\Omega} M(\nabla u^n) \, dx + \mu \int_{\Omega} M^*(a(\nabla u^n)) \, dx \leq \frac{1}{2} \|u^n\|^2_{2, \Omega} + \frac{1}{2} \|f\|^2 C([0, T]; L^2(\Omega)),
\]

Summation then implies for all \(n = 1, 2, \ldots, N \)

\[
\|u^n\|^2_{2, \Omega} + \sum_{j=1}^{n} \|u^j - u^{j-1}\|^2_{2, \Omega} + 2\mu\tau \sum_{j=1}^{n} \int_{\Omega} M(\nabla u^j) \, dx + 2\mu\tau \sum_{j=1}^{n} \int_{\Omega} M^*(a(\nabla u^j)) \, dx \\
\leq \|u^0\|^2_{2, \Omega} + \tau \sum_{j=1}^{n} \|u^j\|^2_{2, \Omega} + \tau \|f\|^2 C([0, T]; L^2(\Omega)).
\]

Applying a discrete Gronwall lemma now proves the assertion. \(\square \)

If the approximation of the initial datum is taken from a bounded set, the theorem above shows indeed uniform boundedness of the discrete solution. The application of a discrete Gronwall lemma cannot be avoided but is not too problematic here from the numerical point of view since it results in a constant that behaves like \(\exp(T/(1-\tau_0)) \).

4. Convergence of the numerical solution. In what follows, we consider a sequence \(\{(m_\ell, N_\ell)\}_{\ell \in \mathbb{N}} \) such that \(m_\ell \to \infty \) as well as \(N_\ell \to \infty \) as \(\ell \to \infty \). Moreover, we suppose that \(\tau_\ell \leq \tau_0 < 1 \) for all \(\ell \in \mathbb{N} \). (When writing \(t_n \) or \(u^n \), we omit calling the dependence on \(\ell \) if no confusion is likely to arise.)

Furthermore, we consider a sequence \(\{u^0_\ell\}_{\ell \in \mathbb{N}} \) of approximations of the initial datum \(u_0 \in L^2(\Omega) \) such that \(u^0_\ell \in V_{m_\ell} \) and

\[
u^0_\ell \to u_0 \quad \text{in} \quad L^2(\Omega) \quad \text{as} \quad \ell \to \infty.
\]

From a fully discrete solution \(\{u^n_\ell\} \) corresponding to the space \(V_{m_\ell} \) and the time grid with step size \(\tau_\ell = T/N_\ell \), we now construct numerical approximations that are defined on the whole time interval: Let \(u_\ell \) be the piecewise constant function with

\[
u_\ell(\cdot, t) = u_\ell \quad \text{if} \quad t \in [t_{n-1}, t_n] \quad (n = 1, 2, \ldots, N_\ell), \quad u_\ell(\cdot, 0) = u^1.
\]

Moreover, let \(\hat{u}_\ell \) denote the linear spline interpolating \((t_0, u^0), (t_1, u^1), \ldots, (t_{N_\ell}, u^{N_\ell}) \).
We also use the piecewise constant in time approximation f_ℓ defined by
\[f_\ell(\cdot, t) = f(\cdot, t_n) \quad \text{if } t \in (t_{n-1}, t_n) \quad (n = 1, 2, \ldots, N_\ell), \quad f_\ell(\cdot, 0) = f(\cdot, t_1). \]
It is clear that if $f \in C([0, T]; L^2(\Omega))$, then
\[\|f - f_\ell\|_{L^\infty(0, T; L^2(\Omega))} \to 0 \quad \text{as } \ell \to \infty. \]

The main result of the paper now reads as follows.

Theorem 4.1 (convergence of approximate solution). Let $u_0 \in L^2(\Omega)$ and $f \in C([0, T]; L^2(\Omega))$ be given. Consider the numerical solution of (1.1) by the scheme (3.2) on a sequence of finite dimensional subspaces such that (3.1) is satisfied, and time step sizes which tend to zero and are bounded away from one. For the approximation of the initial datum, assume (4.1).

Then there is a subsequence, denoted by ℓ', such that the sequences $\{u_\ell\}$ and $\{\hat{u}_\ell\}$ of piecewise constant in time and piecewise linear in time prolongations, respectively, of the numerical solutions converge weakly* in $L^\infty(0, T; L^2(\Omega))$ toward an exact solution $u \in C_c([0, T]; L^2(\Omega))$ to (1.1). Moreover, $u_\ell(\cdot, T) = \hat{u}_\ell(\cdot, T)$ converges weakly in $L^2(\Omega)$ toward $u(\cdot, T)$, ∇u_ℓ converges weakly* in $L_M(\Omega; \mathbb{R}^d)$ toward $\nabla u \in L_M(\Omega; \mathbb{R}^d)$, and $a(\nabla u_\ell)$ converges weakly* in $L_M^*(\Omega; \mathbb{R}^d)$ toward $a(\nabla u) \in L_M^*(\Omega; \mathbb{R}^d)$.

We remark that without assuming higher regularity of the exact solution (which is, in general, not known) no better convergence can be expected.

The proof will be prepared by the following lemma.

Lemma 4.2. Under the assumptions of Theorem 4.1, there is a subsequence, denoted by ℓ', and elements $u \in L^\infty(0, T; L^2(\Omega))$ with $\nabla u \in L_M(\Omega; \mathbb{R}^d)$ and $\gamma_0 u(\cdot, t) = 0$ for almost all $t \in (0, T)$, $z \in L^2(\Omega)$, $\alpha \in L_M^*(\Omega; \mathbb{R}^d)$ such that, as $\ell \to \infty$,
\[
\begin{align*}
&u_\ell - \hat{u}_\ell \to 0 \text{ in } L^2(Q), \quad u_\ell, \hat{u}_\ell \rightharpoonup u \text{ in } L^\infty(0, T; L^2(\Omega)), \\
&\hat{u}_\ell(\cdot, T) = u_\ell(\cdot, T) \rightharpoonup z \text{ in } L^2(\Omega), \\
&\nabla u_\ell \rightharpoonup \nabla u \text{ in } L_M(\Omega; \mathbb{R}^d), \quad a(\nabla u_\ell) \rightharpoonup \alpha \text{ in } L_M^*(\Omega; \mathbb{R}^d).
\end{align*}
\]

Proof. Because of (4.1), the sequence $\{u_\ell\}$ is bounded in $L^2(\Omega)$. Therefore, the right-hand side of the a priori estimate in Theorem 3.4 is also bounded.

A simple calculation (employing the definition of u_ℓ and \hat{u}_ℓ) shows that
\[
\|u_\ell - \hat{u}_\ell\|_{2,Q}^2 = \frac{T}{3} \sum_{n=1}^{N_\ell} \|u^n - u^{n-1}\|_{2,\Omega}^2,
\]
and, in view of Theorem 3.4, the right-hand side tends to zero as $\ell \to \infty$.

An immediate consequence of the definition of the approximate solutions is
\[
\|u_\ell\|_{L^\infty(0, T; L^2(\Omega))} = \max_{n=1,2,\ldots,N_\ell} \|u^n\|_{2,\Omega}, \quad \|\hat{u}_\ell\|_{L^\infty(0, T; L^2(\Omega))} = \max_{n=0,1,\ldots,N_\ell} \|u^n\|_{2,\Omega},
\]
and Theorem 3.4 shows the boundedness of $\{u_\ell\}$ and $\{\hat{u}_\ell\}$ in $L^\infty(0, T; L^2(\Omega))$, which is the dual of the separable Banach space $L^1(0, T; L^2(\Omega))$. We thus have weak* convergence of a subsequence in $L^\infty(0, T; L^2(\Omega))$. The limits of both the sequences must coincide since their difference tends to zero in $L^2(Q)$.

Since $\|\hat{u}_\ell(\cdot, T)\|_{2,\Omega} = \|u_\ell(\cdot, T)\|_{2,\Omega} = \|u^N\|_{2,\Omega}$, the a priori estimate in Theorem 3.4 also proves the asserted weak convergence of a subsequence of $\{u_\ell(\cdot, T)\} = \{u_\ell(\cdot, T)\}$ in $L^2(\Omega)$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
With respect to the sequence of gradients of \(u_\ell \), we observe that

\[\int_Q M(\nabla u_\ell) \, dx \, dt = \tau \sum_{n=1}^{N_\ell} \int_\Omega M(\nabla u^n) \, dx \]

is uniformly bounded; see again Theorem 3.4. From the boundedness of the modular, however, boundedness of the Luxemburg norm follows. Therefore, \(\{\nabla u_\ell\} \subseteq L_M(Q; \mathbb{R}^d) \) is bounded with respect to \(\| \cdot \|_{M,Q} \). Since \(L_M(Q; \mathbb{R}^d) \) is the dual of the separable Banach space \(E_{M^*}(Q; \mathbb{R}^d) \), we obtain weak* convergence of a subsequence in \(L_M(Q; \mathbb{R}^d) \) toward an element \(\xi \in L_M(Q; \mathbb{R}^d) \) such that \(\nabla u_\ell \rightharpoonup \xi \).

It remains to show \(\xi = \nabla u \). However, since \(\mathcal{C}^\infty_c(\Omega; \mathbb{R}^d) \otimes \mathcal{C}^\infty(0, T) \subset E_{M^*}(Q; \mathbb{R}^d) \), we find for all \(\Phi \in \mathcal{C}^\infty(\Omega; \mathbb{R}^d) \) and all \(\psi \in \mathcal{C}^\infty(0, T) \) with integration by parts

\[
\int_Q \xi \cdot \Phi \, dx \, dt = \lim_{\ell' \to \infty} \int_Q \nabla u_{\ell'} \cdot \Phi \, dx \, dt = - \lim_{\ell' \to \infty} \int_Q u_{\ell'} \nabla \cdot \Phi \, dx \, dt = - \int_Q u \nabla \cdot \Phi \, dx \, dt.
\]

In the last step, we have used that \(u_{\ell'} \) converges weakly* in \(L^\infty(0, T; L^2(\Omega)) \) toward \(u \).

In view of Lemma 2.2, we finally get \(\nabla u \in \mathcal{L}_M(Q; \mathbb{R}^d) \).

Since the trace of \(u_{\ell'} \) is zero and since, in particular,

\[
\int_Q \nabla u_{\ell'} \cdot z \, dx \, dt \to \int_Q \nabla u \cdot z \, dx \, dt, \quad \int_Q u_{\ell'} \nabla \cdot z \, dx \, dt \to \int_Q u \nabla \cdot z \, dx \, dt
\]

for all \(z \in L^\infty(0, T; W^{1,q}(\Omega; \mathbb{R}^d)) \) with \(q > d \) (if \(d = 1 \)) as \(\ell \to \infty \), also the limit \(u \) must have vanishing trace for almost all \(t \in (0, T) \).

A similar argumentation as for \(\{\nabla u_\ell\} \) proves the remaining assertion for \(\{a(\nabla u_\ell)\} \) since

\[
\int_Q M^*(a(\nabla u_\ell)) \, dx \, dt = \tau \sum_{n=1}^{N_\ell} \int_\Omega M^*(a(\nabla u^n)) \, dx
\]

is uniformly bounded in view of Theorem 3.4. We infer that there exists \(\alpha \in L_{M^*}(Q; \mathbb{R}^d) \) such that \(a(\nabla u_\ell) \rightharpoonup \alpha \) in \(L_{M^*}(Q; \mathbb{R}^d) \) for a subsequence. Because of Lemma 2.2, \(\alpha \) belongs to the Orlicz class \(\mathcal{L}_{M^*}(Q; \mathbb{R}^d) \). \(\square \)

We are now ready to prove the main result.

Proof of Theorem 4.1. We omit writing \(\ell' \) for the subsequence from Lemma 4.2. Using the approximations \(\hat{u}_\ell \) and \(u_\ell \), the numerical scheme (3.2) can be written as

\[
(3.3) \quad \int_\Omega (\partial_t \hat{u}_\ell v + a(\nabla u_\ell) \cdot \nabla v) \, dx = \int_\Omega f \ell v \, dx \quad \text{for all } v \in V_m.
\]

With respect to time, this equation holds almost everywhere in \((0, T) \) as well as in the weak sense. This immediately implies

\[- \int_Q \hat{u}_\ell R_m v \psi' \, dx \, dt + \int_\Omega \hat{u}_\ell(\cdot, T) R_m v \psi(T) - \int_\Omega \hat{u}_\ell(\cdot, 0) R_m v \psi(0) + \int_Q a(\nabla u_\ell) \cdot \nabla R_m v \psi \, dx \, dt = \int_Q f \ell R_m v \psi \, dx \, dt \quad \text{for all } v \in V, \psi \in \mathcal{C}^1([0, T]).
\]
Note that \(\hat{u}_t(\cdot, T) = u^N \) and \(\hat{u}_t(\cdot, 0) = u^0 \).

With Lemma 4.2 and relations (3.1), (4.1), and (4.2), we obtain in the limit

\[
- \int_Q uv'\psi' dxdt + \int_{\Omega} zw'\psi(T) - \int_{\Omega} u_0v\psi(0) + \int_Q \alpha \cdot \nabla v\psi dxdt = \int_Q f\psi dxdt
\]

(4.4)

for all \(v \in V, \psi \in \mathcal{C}^1([0,T]) \).

In particular, we have employed that as \(\ell \to \infty \),

\[
R_m v' \to v' \in L^1(0,T; L^2(\Omega)), \quad R_m v \to v \in L^2(\Omega),
\]

\[
\nabla R_m v' \to \nabla v' \text{ in } E_M(Q; \mathbb{R}^d), \quad R_m v \psi \to v \psi \text{ in } L^1(0,T; L^2(\Omega)).
\]

This follows from (3.1) and the definition of the norm in \(V \). Note that \(\| \nabla R_m v - \nabla v \|_{M,Q} \leq \| v \|_{\mathcal{C}^1([0,T])} \| \nabla R_m v - \nabla v \|_{M,\Omega} \). Moreover, we observe that \(V \hookrightarrow W^{1,1}(\Omega) \cap L^2(\Omega) \).

Relation (4.4) implies, by density arguments,

\[
- \int_Q u\partial_t wdxdt + \int_{\Omega} z(\cdot,T) dx - \int_{\Omega} u_0w(\cdot,0)dx + \int_Q \alpha \cdot \nabla wdxdt = \int_Q fwdxdt
\]

(4.5)

for all \(w \in \mathcal{W} \),

where \(\mathcal{W} \) was defined in Lemma 2.3. This is a crucial step. We first observe that the tensor product \(V \otimes \mathcal{C}^1([0,T]) \) is included in \(\mathcal{W} \), which shows that (4.4) is a particular case of (4.5). The function \(w_\varepsilon \) that exists in view of Lemma 2.3 for any \(w \in \mathcal{W} \) can be approximated, with respect to the strong convergence in \(\mathcal{C}^1(\overline{\Omega}) \), by a polynomial vanishing at \(\partial \Omega \times [0,T] \), which possesses a tensor structure and thus belongs to \(V \otimes \mathcal{C}^1([0,T]) \). For any \(u \in L^\infty(0,T; L^2(\Omega)) \), \(z, u_0 \in L^2(\Omega), \alpha \in L^1_{M}(Q; \mathbb{R}^d), f \in \mathcal{C}([0,T]; L^2(\Omega)) \), any \(\varepsilon > 0 \), and any \(w \in \mathcal{W} \), there is hence (recalling also the continuous embedding of \(W^{1,1}(0,T; L^2(\Omega)) \) into \(\mathcal{C}([0,T]; L^2(\Omega)) \)) an element \(w_\varepsilon \in V \otimes \mathcal{C}^1([0,T]) \) such that

\[
\left| \int_Q u\partial_t (w_\varepsilon - w)dxdt \right| + \int_{\Omega} z(w_\varepsilon(\cdot,T) - w(\cdot,T))dx + \int_{\Omega} u_0(w_\varepsilon(\cdot,0) - w(\cdot,0))dx + \int_Q \alpha \cdot \nabla (w_\varepsilon - w)dxdt + \int_Q f(w_\varepsilon - w)dxdt < \varepsilon.
\]

We are now going to derive further properties of the limit \(u \).

Recalling that \(u \in L^\infty(0,T; L^2(\Omega)) \) with \(\nabla u \in L^1_{M}(Q; \mathbb{R}^d) \subset L^1(0,T; L^M(\Omega; \mathbb{R}^d)) \), \(\alpha \in L^1_{M}(Q; \mathbb{R}^d) \subset L^1(0,T; L^M(\Omega; \mathbb{R}^d)) \), and \(f \in \mathcal{C}([0,T]; L^2(\Omega)) \), we see that for any \(v \in V \) the functions

\[
t \mapsto \int_{\Omega} u(\cdot,t)v dx, \quad t \mapsto \int_{\Omega} \alpha(\cdot,t) \cdot \nabla v dx, \quad t \mapsto \int_{\Omega} f(\cdot,t)v dx
\]

are at least in \(L^1(0,T) \). This observation, together with (4.4), shows that

\[
\frac{d}{dt} \int_{\Omega} u(\cdot,t)v dx = \int_{\Omega} (f(\cdot,t)v - \alpha(\cdot,t) \cdot \nabla v) dx
\]

holds true in the weak sense. Moreover, the function \(t \mapsto \int_{\Omega} u(\cdot,t)v dx \) then is absolutely continuous. Hence, since \(V \) is dense in \(L^2(\Omega) \) with respect to the strong convergence in \(L^2(\Omega) \), there holds \(u \in \mathcal{C}^w u([0,T]; L^2(\Omega)) \).
We can now prove \(u(\cdot, 0) = u_0 \in L^2(\Omega) \). For arbitrary \(v \in V \), we have with (4.3)

\[
\int_{\Omega} u_0^T R_{\ell, m} v \, dx = \left[\int_{\Omega} \hat{u}_\ell(\cdot, t) R_{\ell, m} v \, dx \frac{t-T}{T} \right]_{t=0}^T \\
= \int_0^T \left(\int_{\Omega} \partial_t \hat{u}_\ell R_{\ell, m} v \, dx \frac{t-T}{T} + \int_{\Omega} \hat{u}_\ell R_{\ell, m} v \, dx \frac{1}{T} \right) \, dt \\
= \int_0^T \left(\int_{\Omega} (f_{\ell, m} v - a(\nabla u_\ell) \cdot \nabla R_{\ell, m} v) \, dx \frac{t-T}{T} + \int_{\Omega} \hat{u}_\ell R_{\ell, m} v \, dx \frac{1}{T} \right) \, dt .
\]

In the limit (see Lemma 4.2), we thus obtain with integration by parts (using (4.6))

\[
\int_{\Omega} u_0 v \, dx = \int_0^T \left(\int_{\Omega} (f v - a(\nabla v) v) \, dx \frac{t-T}{T} + \int_{\Omega} u_0 v \, dx \frac{1}{T} \right) \, dt \\
= \left[\int_{\Omega} u_0 v \, dx \frac{t-T}{T} \right]_{t=0}^T = \int_{\Omega} u(\cdot, 0) v \, dx .
\]

Using the function \(t \mapsto t/T \) instead of \(t \mapsto (t - T)/T \), the same argumentation as above provides that the weak in \(L^2(\Omega) \) limit \(z \) of \(\hat{u}_\ell(\cdot, T) = u_\ell(\cdot, T) \) is indeed \(u(\cdot, T) \),

\[\hat{u}_\ell(\cdot, T) \to z = u(\cdot, T) \in L^2(\Omega) \text{ as } \ell \to \infty . \]

It remains to identify \(\alpha \), i.e., to show that \(\alpha = a(\nabla u) \). For proving this, we employ a variant of Minty’s monotonicity trick. Unfortunately, a direct application of Minty’s trick is not possible since we are working in spaces which are not reflexive and so we cannot just take the limit \(u \) as a test function in the limit equation (4.4).

Using (3.4), we find

\[
\int_{Q} \partial_t \hat{u}_\ell u_\ell \, dx \, dt = \sum_{n=1}^{N_{\hat{u}}} \int_{\Omega} (u^n - u^{n-1}) u^n \, dx \geq \frac{1}{2} \left(\| u^{N_{\hat{u}}} \|^2_{2, \Omega} - \| u^0 \|^2_{2, \Omega} \right) \\
= \frac{1}{2} \left(\| u(\cdot, T) \|^2_{2, \Omega} - \| u^0 \|^2_{2, \Omega} \right) ,
\]

which implies, because of the weak lower semicontinuity of the norm, the weak convergence of \(u_\ell(\cdot, T) \) toward \(z = u(T) \) in \(L^2(\Omega) \) and the strong convergence (4.1),

\[
\frac{1}{2} \left(\| u(\cdot, T) \|^2_{2, \Omega} - \| u^0 \|^2_{2, \Omega} \right) \leq \liminf_{\ell \to \infty} \int_{Q} \partial_t \hat{u}_\ell u_\ell \, dx \, dt .
\]

On the other hand, since \(a \) is monotone, we know that for all \(\eta \in L^\infty(Q; \mathbb{R}^d) \)

\[
\int_{Q} a(\nabla u_\ell) \cdot \nabla u_\ell \, dx \, dt \geq \int_{Q} a(\nabla u_\ell) \cdot \nabla u_\ell \, dx \, dt - \int_{Q} (a(\nabla u_\ell) - a(\eta)) \cdot (\nabla u_\ell - \eta) \, dx \, dt \\
= \int_{Q} a(\nabla u_\ell) \cdot \eta \, dx \, dt + \int_{Q} a(\eta) \cdot (\nabla u_\ell - \eta) \, dx \, dt .
\]

Note that \(a(\eta) \in E_{M^*}(Q; \mathbb{R}^d) \), since \(\eta \in L^\infty(Q; \mathbb{R}^d) \) and \(a \) is continuous. In the limit, we thus obtain (see again Lemma 4.2)

\[
\int_{Q} \alpha \cdot \eta \, dx \, dt + \int_{Q} a(\eta) \cdot (\nabla u - \eta) \, dx \, dt \leq \liminf_{\ell \to \infty} \int_{Q} a(\nabla u_\ell) \cdot \nabla u_\ell \, dx \, dt .
\]
Finally, we know that
\[\int_Q f \ell u \, dx \, dt \to \int_Q f u \, dx \, dt \text{ as } \ell \to \infty. \]

Taking \(v = u_\ell(\cdot, t) \in V_m \) in (4.3) and using (4.7) and (4.8), we thus come up with
\[\frac{1}{2} \left(\|u(\cdot, T)\|_{L^2(\Omega)}^2 - \|u_0\|_{L^2(\Omega)}^2 \right) + \int_Q \alpha \cdot \eta \, dx \, dt \]
\[+ \int_Q a(\eta) \cdot (\nabla u - \eta) \, dx \, dt \leq \int_Q f u \, dx \, dt. \]

Unfortunately, we cannot take \(w = u \) in (4.5) due to the lack of regularity in time. We therefore consider the centered Steklov average of \(u \), given by
\[(S_h u)(\cdot, t) = \frac{1}{2h} \int_{t-h}^{t+h} u(\cdot, s) \, ds, \quad t \in [0, T], \]
where \(h > 0 \) and where \(u \) is extended by zero outside \([0, T]\). The properties of \(u \) imply that \(S_h u \in \mathcal{W} \). It is known that
\[\lim_{h \to 0} \int_Q f S_h u \, dx \, dt = \int_Q f u \, dx \, dt. \]

On the other hand, we find with (4.5)
\[\int_Q f S_h u \, dx \, dt = -\int_Q u \partial S_h u \, dx \, dt + \int_\Omega u(\cdot, T)S_h u(\cdot, T) \, dx \]
\[- \int_\Omega u(\cdot, 0)S_h u(\cdot, 0) \, dx + \int_Q \alpha \cdot \nabla S_h u \, dx \, dt, \]
where \((\partial S_h u)(\cdot, t) = (u(\cdot, t + h) - u(\cdot, t - h)) / (2h) \) and thus
\[\int_Q u \partial S_h u \, dx \, dt = \frac{1}{2h} \int_0^T \int_\Omega u(\cdot, t) (u(\cdot, t + h) - u(\cdot, t - h)) \, dx \, dt \]
\[= \frac{1}{2h} \int_0^{T-h} \int_\Omega u(\cdot, t) u(\cdot, t + h) \, dx \, dt - \frac{1}{2h} \int_h^T \int_\Omega u(\cdot, t) u(\cdot, t - h) \, dx \, dt = 0. \]

Moreover, we have
\[\int_\Omega u(\cdot, T)S_h u(\cdot, T) \, dx = \frac{1}{2h} \int_{T-h}^T \int_\Omega u(\cdot, T)u(\cdot, s) \, dx \, ds \]
\[\to \frac{1}{2} \int_\Omega u(\cdot, T)^2 \, dx = \frac{1}{2} \|u(\cdot, T)\|_{L^2(\Omega)}^2 \text{ as } h \to 0. \]

Recall here that \(u \in \mathcal{C}_w([0, T]; L^2(\Omega)) \) and thus \(s = T \) is a Lebesgue point of the mapping \([0, T] \ni s \mapsto \int_\Omega u(\cdot, T)u(\cdot, s) \, dx \). Analogously, we have
\[\int_\Omega u(\cdot, 0)S_h u(\cdot, 0) \, dx \to \frac{1}{2} \|u_0\|_{L^2(\Omega)}^2 \text{ as } h \to 0. \]
Finally, we observe that
\[
\int_Q \alpha \cdot \nabla S_k u \, dx dt - \int_Q \alpha \cdot \nabla u \, dx dt
= \frac{1}{2h} \int_0^T \int_{t-h}^{t+h} \alpha(s, t) \cdot \nabla (u(s) - u(t)) \, dx ds dt
\]
\[
= \frac{1}{2} \int_0^T \int_0^T \int_0^T \alpha(s, t) \cdot (\nabla u(t + rh) - \nabla u(t)) \, dx dt dr \to 0 \text{ as } h \to 0
\]
\[
(4.12)
\]
since the translation of a function in the Orlicz space $L_M(Q; \mathbb{R}^d)$ is continuous with respect to the weak convergence in $E_M(Q; \mathbb{R}^d)$ (see [15, Lemma 1.5] and [9, Proposition 1.2]).

Altogether, we infer from (4.9) that for all $\eta \in L^\infty(Q; \mathbb{R}^d)$
\[
0 \leq \int_Q (a(\eta) - \alpha) \cdot (\eta - \nabla u) \, dx dt .
\]

Following the modification of Minty’s trick in [18] (see also [21]), we set $Q_k = \{(x, t) \in Q : |\nabla u(x, t)| > k\}$ for any $k \in \mathbb{N}$. For arbitrary $i, j \in \mathbb{N}$ with $j < i$, arbitrary $\lambda > 0$, and arbitrary $\zeta \in L^\infty(Q; \mathbb{R}^d)$, we take
\[
\eta = (\nabla u) \mathbb{I}_{Q \setminus Q_i} + \lambda \zeta \mathbb{I}_{Q \setminus Q_j} = \begin{cases}
0 & \text{in } Q_i, \\
\nabla u & \text{in } Q_j \setminus Q_i, \\
\nabla u + \lambda \zeta & \text{in } Q \setminus Q_j .
\end{cases}
\]

This shows that
\[
0 \leq - \int_{Q_i} (a(0) - \alpha) \cdot \nabla u \, dx dt + \lambda \int_{Q \setminus Q_j} (a(\nabla u + \lambda \zeta) - \alpha) \cdot \zeta \, dx dt .
\]

As in (2.3), we see that the first term on the right-hand side tends to zero as $i \to \infty$ since $(a(0) - \alpha) \cdot \nabla u \in L^1(Q)$. We therefore come up with
\[
0 \leq \int_{Q \setminus Q_j} (a(\nabla u + \lambda \zeta) - \alpha) \cdot \zeta \, dx dt .
\]

Recalling that a is continuous and monotone, such that for $\lambda \in [0, 1]$
\[
a(\nabla u + \lambda \zeta) \cdot \zeta \leq a(\nabla u + \zeta) \cdot \zeta \in L^1(Q) ,
\]

Lebesgue’s theorem on dominated convergence implies
\[
\int_{Q \setminus Q_j} (a(\nabla u + \lambda \zeta) - \alpha) \cdot \zeta \, dx dt \to \int_{Q \setminus Q_j} (a(\nabla u) - \alpha) \cdot \zeta \, dx dt \text{ as } \lambda \to 0
\]
and thus
\[
0 \leq \int_{Q \setminus Q_j} (a(\nabla u) - \alpha) \cdot \zeta \, dx dt
\]
for any $j \in \mathbb{N}$ and any $\zeta \in L^\infty(Q; \mathbb{R}^d)$. The choice $\zeta = -\frac{a(\nabla u) - \alpha}{|a(\nabla u) - \alpha|}$ if $a(\nabla u) \neq \alpha$ and $\zeta = 0$ otherwise provides
\[
\int_{Q \setminus Q_j} |a(\nabla u) - \alpha| \, dx dt \leq 0
\]
and thus $\alpha = a(\nabla u)$ almost everywhere in $Q \setminus Q_j$. Since j was arbitrary, this proves $\alpha = a(\nabla u)$ almost everywhere in Q, which finishes the proof. \qed

Remark 4.3. If the exact solution is unique, which is the case if the solution is sufficiently regular or if the nonlinearity a is strictly monotone, then the whole sequences of approximate solutions converge.

Uniqueness is seen as follows. Let u and v be two different solutions to the problem with the same data (u_0, f). From the proof above, we already know that

$$-\int_Q (u - v) \partial_t w dx dt + \int_\Omega (u(\cdot, T) - v(\cdot, T)) w(\cdot, T) dx$$

(4.13)

$$+ \int_Q (a(\nabla u) - a(\nabla v)) \cdot \nabla w dx dt = 0 \text{ for all } w \in \mathbb{W}.$$

If $u, v \in \mathbb{W}$ with $a(\nabla u), a(\nabla v) \in L^1_{\text{loc}}(Q; \mathbb{R}^d)$, then (4.13) implies $\|u(\cdot, \bar{t}) - v(\cdot, \bar{t})\|_{L^2} = 0$ for all $\bar{t} \in [0, T]$ and thus uniqueness. (Integrate by parts in the first term on the left-hand side, take $w = (u - v) \Phi_{\varepsilon, \bar{t}}$ with $\Phi_{\varepsilon, \bar{t}}(t) = 1$ for $0 \leq t \leq \bar{t} - \varepsilon$, $\Phi_{\varepsilon, \bar{t}}(t) = (\bar{t} - t)/\varepsilon$ for $\bar{t} - \varepsilon < t \leq \bar{t}$, $\Phi_{\varepsilon, \bar{t}}(t) = 0$ otherwise, use the monotonicity of a, and let ε tend to zero.)

In case of a strictly monotone nonlinearity take $w = S_h(u - v)$. With observations analogous to (4.10), (4.11), and (4.12), we find

$$\frac{1}{2} \|u(\cdot, T) - v(\cdot, T)\|_{L^2}^2 + \int_Q (a(\nabla u) - a(\nabla v)) \cdot (\nabla u - \nabla v) dx dt = 0$$

as $h \to 0$. On the other hand, the strict monotonicity of a shows that

$$\int_Q (a(\nabla u) - a(\nabla v)) \cdot (\nabla u - \nabla v) dx dt = 0$$

if and only if $\nabla u = \nabla v$ almost everywhere. Recalling here that $\gamma_0 u = \gamma_0 v = 0$, this is in contradiction to $u \neq v$.

5. Error estimate for the temporal semidiscretization. Although results on additional regularity of a weak solution to the problem under consideration are not at hand, one may ask for estimates of the discretization error providing convergence rates in case the exact solution is smooth. In this section, we make a first step toward error estimates, restricting ourselves, however, to the temporal semidiscretization. Error estimates for the full discretization would require estimates for the corresponding elliptic problem, which are not at hand. The only contributions in this direction are [4, 10]; both require the restrictive Δ_2-condition.

In [4], abstract results on the order of convergence of a Galerkin approximation, measured in an appropriate Orlicz–Sobolev norm, as a nonlinear function of the error of the best approximation with respect to this Orlicz–Sobolev norm are proved, whereas [10] concentrates on estimates for the interpolation error and also provides an elliptic error estimate for a special class of quasi-linearities that allow us to employ the concept of quasi-norms.

Theorem 5.1 (error estimate). Let $u_0, u^0 \in L^2(\Omega), f \in C([0, T]; L^2(\Omega))$, $u, \partial_t u, \partial^2_{tt} u \in L^1(0, T; L^2(\Omega))$ with $u(\cdot, t) \in \mathcal{V} = \{v \in L^2(\Omega) : \nabla v \in L^1_{\text{loc}}(\Omega; \mathbb{R}^d), \gamma_0 v = 0\}, a(\nabla u(\cdot, t)) \in L^1_{\text{loc}}(\Omega; \mathbb{R}^d)$ for all $t \in [0, T]$. Let $u^n \in \mathcal{V}$ with $a(\nabla u^n) \in L^1_{\text{loc}}(\Omega; \mathbb{R}^d)$ be an approximation of $u(\cdot, t_n)$ such that for $n = 1, 2, \ldots, N$,

$$\int_\Omega \left(\frac{u^n - u^{n-1}}{\tau} v + a(\nabla u^n) \cdot \nabla v \right) dx = \int_\Omega f(\cdot, t_n) v dx \quad \text{for all } v \in \mathcal{V}.$$
Then, for \(n = 1, 2, \ldots, N, \)
\[
\| u(\cdot, t_n) - u^n \|_{2, \Omega} \leq \| u^0 - u^0 \|_{2, \Omega} + 2\tau \| \partial_t^2 u \|_{L^1(0, \tau; L^2(\Omega))}.
\]

Proof. The error \(e^n := u(\cdot, t_n) - u^n \) satisfies, for \(n = 1, 2, \ldots, N \) and all \(v \in \mathcal{V}, \)
\[
\int_{\Omega} \left(\frac{e^n - e^{n-1}}{\tau} v + (a(\nabla u(\cdot, t_n)) - a(\nabla u^n)) \cdot \nabla v \right) dx
= \int_{\Omega} \left(u(\cdot, t_n) - u(\cdot, t_{n-1}) - \partial_t u(\cdot, t_n) \right) v dx = -\frac{1}{\tau} \int_{t_{n-1}}^{t_n} \int_{\Omega} (t - t_{n-1}) \partial^n_\Omega u(\cdot, t) v dx dt.
\]

With \(v = e^n \), relation (3.4), and the monotonicity of \(a \), we find
\[
\| e^n \|_{2, \Omega}^2 - \| e^{n-1} \|_{2, \Omega}^2 \leq 2\tau \int_{t_{n-1}}^{t_n} \| \partial^n_\Omega u(\cdot, t) \|_{2, \Omega} dt \| e^n \|_{2, \Omega}.
\]
One may show by induction that \(a^2_n - a^2_{n-1} \leq 2\tau a_n b_n \) \((n = 1, 2, \ldots) \) for \(\{a_n\}, \{b_n\} \subset \mathbb{R}^+ \), \(\tau > 0 \), implies \(a_n \leq a_0 + 2\tau \sum_{j=1}^{\infty} b_j \) \((n = 1, 2, \ldots) \). This proves the assertion.

6. Numerical illustration. We consider example (7) on \(Q = (-1, 1)^2 \times (0, 1) \) with \(u_0(x, y) = e^{-1} \sin(\pi x) \sin(\pi y) \) and \(f \) such that the exact solution is given by \(u(x, y, t) = e^{-t-1} u_0(x, y) \).

For the spatial discretization, we employ conforming \(\mathcal{P}^1 \) finite elements (here indeed on uniform squares), which fit into our framework because of Example 3.1. The arising nonlinear system of equations in each time step is solved by a Newton iteration where we use the exact Jacobian. The time step size is taken proportional to the square of the spatial mesh size. The computations have been carried out using deal.II (see [3]).

In Figure 6.1, left, the error between the exact solution \(u \) and the numerical solution \(u^t \) is shown in the norm of \(L^\infty(0, T; L^2(\Omega)) \). Moreover in Figure 6.1, right, the difference in the gradient of the exact and the numerical solution is shown in the norm of \(L^1(Q) \) (big boxes) and in \(\sqrt{\mathcal{M}(\Omega)} \) (small boxes). (We consider the square root of the modular since \(M(\xi) \sim \frac{1}{2} |\xi|^2 \) for \(|\xi| \to 0 \).) On the \(x \)-axis, we have the number of finite elements. Table 6.1 shows the corresponding numbers.

It turns out that for the smooth solution we consider here, the convergence in the norm of \(L^\infty(0, T; L^2(\Omega)) \) is approximately of order \(\mathcal{O}(\tau + h^2) \), which is in accordance with the error estimate from the previous section.

![Fig. 6.1. Error between exact and numerical solution.](image-url)
ACKNOWLEDGMENTS. The authors gratefully acknowledge fruitful discussions with Filip Rindler and help with the numerical computations from David Šiska.

REFERENCES