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THE DOUBLY DISPERSIVE BOUSSINESQ EQUATION
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The Doubly Dispersive Boussinesq Equation

utt − uxx + uxxxx − uxxtt = (g(u))xx , x ∈ R, t > 0.

It describes the propagation of long waves in various
continuous media.

The waves travel both to the right and to the left.

g(u) : a sufficiently smooth nonlinear function
(nonlinear waves).

There exists a double effect of dispersion due to uxxxx and
uxxtt .

Special cases:

The Boussinesq equation.

The improved (regularized) Boussinesq equation.
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A historical remark

The Boussinesq Equation

utt − uxx + uxxxx = (g(u))xx .

differs from Boussinesq’s Boussinesq equation

utt − uxx − uxxxx = (g(u))xx .

Boussinesq (1872): Long surface waves in shallow water.

u: free surface elevation.

It is called the ”bad” Boussinesq equation due to
amplification of small perturbations. (linearly unstable)

Zabusky and Kruskal (1965): Longitudinal waves in
continuum approximation of an anharmonic chain of particles
(The FPU (Fermi-Pasta-Ulam) problem).
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The Improved Boussinesq Equation

utt − uxx − uxxtt = (g(u))xx .

Longitudinal (extensional) waves in an elastic rod of circular
cross section with free surface.

Long waves: The wavelength is large compared with the
radius ( radius

wavelength << 1).

u: longitudinal (axial) strain.
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The Improved Boussinesq Equation: Derivation

utt − uxx − uxxtt = (g(u))xx .

Love hypothesis: V = −νrUx

where V is the radial displacement, U is the axial
displacement, r is the radial coordinate, and ν is the Poisson
coefficient. (Poisson contraction effect)

The dispersion term uxxtt accounts for the transverse motion.

The finiteness of the rod radius causes dispersion (geometric
dispersion).

Characteristic length: rod radius.

Ostrowski and Sutin (1977), Sorensen et al (1984), Clarkson
et al (1986).
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The Doubly Dispersive Boussinesq Equation

utt − uxx + uxxxx − uxxtt = (g(u))xx .

The new dispersion term uxxtt introduces an additional
characteristic length.

Several possible origins of the additional dispersion:

Higher-order gradient elasticity (physical dispersion)

An elastic rod embedded in another elastic medium (physical
dispersion)

A narrowing rod (geometrical dispersion)

Samsonov (1984), Samsonov and Sokurinskaya (1988).
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A GENERAL CLASS OF
NONLOCAL NONLINEAR WAVE EQUATIONS
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A Nonlocal Nonlinear Wave Equation

utt − Luxx = B(g(u))xx , x ∈ R, t > 0.

g : a sufficiently smooth nonlinear function,

L and B : linear pseudodifferential operators,

L : regularization through the linear dispersion,

B : regularization through the smoothing of the nonlinearity.

A double effect of dispersion (spatial nonlocality).
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Notation

l(ξ) and b(ξ) : symbols of L and B, respectively.

F (Lv) (ξ) = l(ξ)F(v)(ξ), F (Bv) (ξ) = b(ξ)F(v)(ξ),

F : the Fourier transform with respect to x .

The Fourier transform of u(x): û(ξ)

The L2 Sobolev space on R: Hs = Hs(R)

The Hs norm:

‖u‖2s =

∫
(1 + ξ2)s |û(ξ)|2dξ

The L∞ norm: ‖u‖L∞

The L2 norm: ‖u‖
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Main Assumptions

There are positive constants c1, c2 and c3 so that for all ξ ∈ R,

• c2
1 (1 + ξ2)ρ/2 ≤ l(ξ) ≤ c2

2 (1 + ξ2)ρ/2,

• 0 < b(ξ) ≤ c2
3 (1 + ξ2)−r/2.

This implies that

L is an elliptic coercive operator of order ρ with ρ ≥ 0,

B is an elliptic positive operator of order −r with r ≥ 0.
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A Different Form of the Wave Equation

utt − L̃uxx + Mutt = (g(u))xx , x ∈ R, t > 0.

where

L̃ = B−1L,

M = B−1 − I ,

l̃(ξ) and m(ξ) are the symbols of L̃ and M, respectively,

M is an elliptic positive pseudodifferential operator of order
r > 0.
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The Linear Dispersion Relation

The linearized wave equation:

utt − L̃uxx + Mutt = 0

The linear dispersion relation:

ξ 7→ ω2(ξ) =
ξ2 l̃(ξ)

1 + m(ξ)

Wavelike solutions if l̃(ξ)
1+m(ξ) ≥ 0, that is, l(ξ) ≥ 0,

The double nature of dispersion:

”Numerator-based” dispersion,

”Denominator-based” dispersion.
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Special Cases

L̃ = I − ∂2x and M = −∂2x

The double dispersion equation:

utt − uxx − uxxtt + uxxxx = (g(u))xx .

L̃ = 1− ∂2x and M = 0 (the zero operator)

The Boussinesq equation:

utt − uxx + uxxxx = (g(u))xx
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Further Special Cases

L̃ = I and M = −∂2x

The improved (or regularized) Boussinesq equation:

utt − uxx − uxxtt = (g(u))xx

L = 0 and B is a convolution

(Bv)(x) = (β ∗ v)(x) =

∫
β(x − y)v(y)dy , β(x) = F−1 (b(ξ))

The nonlocal nonlinear wave equation:

utt =

(∫
β(x − y)g(u(y , t))dy

)
xx

.

Nonlocal Models and Peridynamics, November 5-7, 2012, Berlin



THE CAUCHY PROBLEM:
MAIN RESULTS
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The Cauchy Problem for the Linearized Equation

Theorem

Let

T > 0, s ∈ R, and

ϕ ∈ Hs , ψ ∈ Hs−1− ρ
2 , h ∈ L1([0,T ] ,Hs+1− ρ

2 ).

Part A: Then the Cauchy problem

utt − Luxx = (h(x , t))xx , x ∈ R, t > 0,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x),

has a unique solution u ∈ C ([0,T ] ,Hs) ∩ C 1([0,T ] ,Hs−1− ρ
2 ).

Part B: For 0 ≤ t ≤ T and some positive constants A1 and A2,

‖u(t)‖s + ‖ut(t)‖s−1− ρ
2

≤ (A1 + A2T )

(
‖ϕ‖s + ‖ψ‖s−1− ρ

2
+

∫ t

0
‖h(τ)‖s+1− ρ

2
dτ

)
.
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Sketch of the Proof

Let K = L1/2 and k(ξ) =
√

l(ξ). Then

c1(1 + ξ2)ρ/4 ≤ k(ξ) ≤ c2(1 + ξ2)ρ/4.

Applying the Fourier transform

ûtt + (ξk(ξ))2 û = −ξ2ĥ(ξ, t),

û(ξ, 0) = ϕ̂(ξ), ût(ξ, 0) = ψ̂(ξ).

The solution is generated by the semigroup

S(t)v = F−1
(

sin(ξk(ξ)t)

ξk(ξ)
v̂(ξ)

)
.
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Sketch of the Proof (continued)

The solution is

u(t) = ∂tS(t)ϕ+ S(t)ψ +

∫ t

0
∂2xS(t − τ)h(τ)dτ.

The estimate for the first term is ‖∂tS(t)v‖2s ≤ ‖v‖
2
s .

For the second term,

‖S(t)v‖2s ≤
(

t221+
ρ
2 +

2

c2
1

)
‖v‖2s−1− ρ

2
.

The third term can be estimated via Minkowski’s inequality∥∥∥∥∫ t

0

∂2xS(t − τ)v(τ)dτ

∥∥∥∥
s

≤
(

t221+ ρ
2 +

2

c2
1

)1/2 ∫ t

0

‖v(τ)‖s+1− ρ
2

dτ.
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Sketch of the Proof (continued)

Summing up the estimates, we obtain

‖u(t)‖s ≤ ‖ϕ‖s+

(
t221+ ρ

2 +
2

c2
1

)1/2(
‖ψ‖s−1− ρ

2
+

∫ t

0

‖h(τ)‖s+1− ρ
2

dτ

)
for 0 ≤ t ≤ T .

Differentiating the solution with respect to t, we get

ut(t) = ∂2t S(t)ϕ+ ∂tS(t)ψ +

∫ t

0
∂2x∂tS(t − τ)h(τ)dτ.

For the first term we have the estimate∥∥∂2t S(t)v
∥∥2
s−1− ρ

2
≤ c2

2 ‖v‖
2
s .
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Sketch of the Proof (continued)

For the second term, ‖∂tS(t)v‖s ≤ ‖v‖s .

For the third term,∥∥∥∥∫ t

0

∂2x∂tS(t − τ)v(τ)dτ

∥∥∥∥
s−1− ρ

2

≤
(

t221+ ρ
2 +

2

c2
1

)1/2 ∫ t

0

‖v(τ)‖s+1− ρ
2

dτ.

The use of these estimates leads to

‖ut(t)‖s−1− ρ
2
≤ c2 ‖ϕ‖s + ‖ψ‖s−1− ρ

2
+

∫ t

0
‖h(τ)‖s+1− ρ

2
dτ

for 0 ≤ t ≤ T .
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Local Existence for the Nonlinear Problem

Theorem

Assume that
ρ
2 + r ≥ 1, s > 1

2 , g ∈ C [s]+1(R),

ϕ ∈ Hs , ψ ∈ Hs−1− ρ
2 .

Then there is some T > 0 such that the Cauchy problem has a

unique solution u ∈ C ([0,T ],Hs) ∩ C 1
(

[0,T ],Hs−1− ρ
2

)
.

Regularization / Smoothing

The larger the order ρ the smaller the order of Sobolev space.

Increasing ρ adds more regularization into the problem.

More regularization allows less smooth initial data.

The combined effect of two dispersive effects must be greater
than a critical value.

Remark

The condition s > 1/2 is necessary for the control of the nonlinear
term g(u) through the Lemmas.

Remark

The Sobolev space Hs−1− ρ
2 where ψ and ut(t) lie may have a

negative exponent.
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Sketch of the Proof

utt − Luxx = B(g(u))xx , x ∈ R, t > 0,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x).

Assume that ϕ ∈ Hs and ψ ∈ Hs−1− ρ
2 for some fixed

s > 1/2.

Define the Banach space

X (T ) = {u ∈ C ([0,T ] ,Hs) ∩ C 1([0,T ] ,Hs−1− ρ
2 )}

endowed with the norm

‖u‖X (T ) = max
t∈[0,T ]

(
‖u(t)‖s + ‖ut(t)‖s−1− ρ

2

)
for a fixed T > 0.
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Sketch of the Proof (continued)

By the Sobolev Embedding Theorem,

Hs(R) ⊂ L∞(R) for s ¿1/2.

Then u ∈ C ([0,T ] , L∞) whenever u ∈ X (T ).

By the Sobolev Embedding Theorem, there is a constant d
such that

‖u(t)‖L∞ ≤ d ‖u(t)‖X (T ) (for s > 1/2)

Consider a closed subset Y (T ) of X (T )

Y (T ) = {u ∈ X (T ) : ‖u‖X (T ) ≤ A}

for some constant A > 0 to be determined later.
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Sketch of the Proof (continued)

Consider the initial-value problem

utt − Luxx = (g(w))xx ,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x)

with w ∈ Y (T ).

By the theorem for the linearized problem, the above problem
has a unique solution u(x , t).

The map S carries w ∈ Y (T ) into the unique solution u(x , t):
u(x , t) = S(w).
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Sketch of the Proof (continued)

We prove that, for appropriately chosen T and A, the map S
has a unique fixed point in Y (T ).

This will be done in three steps.

In the first step we establish that the range of Y (T ) under the
map S belongs to the space X (T ).

Secondly, we derive suitable estimates on ‖S(w)‖X (T ) so that

S(Y (T )) ⊂ Y (T ).

The third step is to show that the mapping S is a contraction
mapping.
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Sketch of the Proof (continued)

Lemma: Local Bound

Assume that f ∈ C k(R), f (0) = 0, u ∈ Hs ∩ L∞ and k = [s] + 1,
where s ≥ 0. Then, we have

‖f (u)‖s ≤ C1(M) ‖u‖s

if ‖u‖L∞ ≤ M, where C1(M) is a constant dependent on M.

Lemma: Lipschitz Condition

Assume that f ∈ C k(R), u, v ∈ Hs ∩ L∞ and k = [s] + 1, where
s ≥ 0. Then, we have

‖f (u)− f (v)‖s ≤ C2(M) ‖u − v‖s

if ‖u‖L∞ ≤ M, ‖v‖L∞ ≤ M, ‖u‖s ≤ M, and ‖v‖s ≤ M, where
C2(M) is a constant dependent on M and s.
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Sketch of the Proof (continued)

Lemma

Assume that ρ ≥ 2, s > 1/2, ϕ ∈ Hs , ψ ∈ Hs−1− ρ
2 and

g ∈ C [s]+1(R). Then for suitably chosen A and sufficiently small
T , the map S is a contractive mapping from Y (T ) into itself.

we need to show that S(Y (T )) ⊂ Y (T ).

we use a standard contraction argument.

With the choice of T the mapping S becomes contractive.

By the Banach Fixed Point Theorem there is a unique
u ∈ Y (T ) such that S(u) = u.
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Global Existence for the Nonlinear Problem

Theorem

Assume that

ρ ≥ 2, s > 1
2 , g ∈ C [s]+1(R),

ϕ ∈ Hs , ψ ∈ Hs−1− ρ
2

the unique solution of the Cauchy problem is defined on the
maximal time interval [0,Tmax).

If the maximal time is finite, i.e. Tmax <∞, then

lim sup
t→T−max

[‖u(t)‖s + ‖ut(t)‖s−1− ρ
2
] =∞.

Sketch of the Proof

The main approach is to look for the local solutions of the Cauchy
problems on finite time intervals and then is to patch those local
solutions together in a continuous manner.
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Global Existence for the Nonlinear Problem

Theorem (Energy Identity)

Suppose that u(x , t) is a solution of the Cauchy problem on
some interval [0,T ).

Let K = L1/2, G (u) =
∫ u
0 g(p)dp.

Let Λ−αw = F−1[|ξ|−αFw ] and

B−1/2w = F−1[(b(ξ))−1/2Fw ].

If B−1/2Λ−1ψ ∈ L2, B−1/2Kϕ ∈ L2 and G (ϕ) ∈ L1, then, for any
t ∈ [0,T ), the energy identity

E (t) =
∥∥∥B−1/2Λ−1ut

∥∥∥2 +
∥∥∥B−1/2Ku

∥∥∥2 + 2

∫
R

G (u)dx = E (0)

is satisfied.
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Global Existence for the Nonlinear Problem

Theorem A

Assume that

r + ρ
2 ≥ 1, s = r

2 + ρ
2 , g ∈ C [ r

2
+ ρ

2
]+1(R),

ϕ ∈ H
r
2
+ ρ

2 , ψ ∈ H
r
2
−1,

Λ−1ψ ∈ L2, G (ϕ) ∈ L1 and G (u) ≥ 0 for all u ∈ R.

Then the Cauchy problem has a unique global solution

u ∈ C
(

[0,∞),H
r
2
+ ρ

2

)
∩ C 1

(
[0,∞),H

r
2
−1
)
.
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Global Existence for the Nonlinear Problem

Theorem B

Assume that

r + ρ
2 ≥ 1, r

2 + ρ
2 > 1/2, s > 1/2, g ∈ C [s]+1(R),

ϕ ∈ Hs , ψ ∈ Hs−1− ρ
2 ,

G (ϕ) ∈ L1 and G (u) ≥ 0 for all u ∈ R.

Then the Cauchy problem has a unique global solution

u ∈ C ([0,∞),Hs) ∩ C 1
(

[0,∞),Hs−1− ρ
2

)
.
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Blow-up in Finite Time

Theorem

Assume that

B−1/2Kϕ ∈ L2, B−1/2Λ−1ψ ∈ L2, G (ϕ) ∈ L1.

If there is some ν > 0 such that

pg(p) ≤ 2(1 + 2ν)G (p) for all p ∈ R,

and

E (0) =
∥∥∥B−1/2Λ−1ψ

∥∥∥2 +
∥∥∥B−1/2Kϕ

∥∥∥2 + 2

∫
R

G (ϕ)dx < 0,

then the solution u(x , t) of the Cauchy problem blows up in finite
time.
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Sketch of the Proof

Lemma (Levine)

Suppose that H(t), t ≥ 0 is a positive, twice differentiable
function satisfying H ′′H − (1 + ν) (H ′)2 ≥ 0 where ν > 0.

If H(0) > 0 and H ′(0) > 0, then H(t)→∞ as t → t1 for
some t1 ≤ H(0)/ (νH ′(0)).
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ONGOING STUDY
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Ongoing Study

Present problem

utt − Luxx = B(g(u))xx , x ∈ R, t > 0,

u(x , 0) = ϕ(x), ut(x , 0) = ψ(x).

Assumptions:

c2
1 (1 + ξ2)ρ/2 ≤ l(ξ) ≤ c2

2 (1 + ξ2)ρ/2,

0 < b(ξ) ≤ c2
3 (1 + ξ2)−r/2.

Question: What happens for small amplitude solutions ?
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