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Robustness of Fusion Frames under Erasures
of Subspaces and of Local Frame Vectors

Peter G. Casazza and Gitta Kutyniok

Abstract. Fusion frames were recently introduced to model applications un-
der distributed processing requirements. In this paper we study the behavior
of fusion frames under erasures of subspaces and of local frame vectors. We
derive results on sufficient conditions for a fusion frame to be robust to such
erasures as well as results on the design of fusion frames which are optimally
robust in the sense of worst case behavior of the reconstruction error.

1. Introduction

In the last 20 years, frames, i.e., systems, which provide robust, stable and
usually non-unique representations of vectors, have been employed in numerous
applications such as filter bank theory [5], sigma-delta quantization [2], signal and
image processing [6], and wireless communications [13]. However, a large number
of new applications have emerged where the set-up can hardly be modeled naturally
by one single frame system. Many of these applications share the common property
of requiring distributed processing such as all types of sensor networks [15].

The notion of fusion frames, introduced by the authors in [8] and [9], provides
an extensive framework not only to model sensor networks, but also to provide a
means to improve robustness or develop feasible reconstruction algorithms. Related
approaches with a different focus were undertaken by Aldroubi, Cabrelli, and Molter
[1], Fornasier [12], and Sun [19, 20].

Some aspects of the theory of fusion frames have already been applied. Bod-
mann, Kribs, and Paulsen [4] and Bodmann [3] employed Parseval fusion frames
under the term weighted projective resolution of the identity for optimal trans-
mission of quantum states and for packet encoding. Also, Rozell, Goodman, and
Johnson [16, 17, 18] used fusion frames to study noise reduction in sensor networks
and as well as overlapping feature spaces of neurons in visual and hearing systems.
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In this paper we focus on the study of robustness of fusion frames under era-
sures. One motivation comes from the theory of sensor networks. Generally speak-
ing, a fusion frame is a weighted set of subspaces with controlled overlaps, where
each subspace is spanned by a local frame. Now the measurements taken by the
sensors in a sensor network can be modeled as the inner products of a given signal
with all local frame vectors. The subspaces model the groupings of the sensors,
and the weights model the significance of each group. The reconstruction is now
done first within the subspaces, i.e., within each group of sensors, and secondly
the signal is reconstructed completely. The first step can be modeled using con-
ventional frame theory, however for the second step fusion frame theory becomes
essential. Due to the fact that single sensors might lose their ability to transmit,
it becomes necessary to study the robustness of fusion frames under erasures of
local frame vectors. Also the signal of one whole group of sensors might be delayed
or completely lost, hence the erasure of one of multiple subspaces of fusion frames
needs to be examined.

We will show that indeed sufficient conditions on the robustness of a fusion
frame with respect to erasures of subspaces can be formulated in terms of weight
conditions (Theorem 3.2). It will be also pointed out how this leads to an easy
construction process for such fusion frames. We further study the design of fusion
frames which behave optimally with respect to the worst case reconstruction error
in the setting of Parseval fusion frames. For Parseval fusion frames with prescribed
– but not necessarily equal – dimensions, we characterize optimality in terms of
conditions on the weights (Theorem 3.6). Considering erasures of local frame vec-
tors, sufficient conditions depend – as expected – on the properties of the frames
inside the subspaces (Theorem 4.1), and optimality is characterized in terms of
conditions on the norms of the local frame vectors (Theorem 4.3).

This paper is organized as follows. In Section 2 we briefly review the main
definitions and notions related to fusion frames. In Section 3 and 4 we study
erasures of whole subspaces and of local frame vectors, respectively. In both cases
we derive results on sufficient conditions for robustness of a fusion frame with
respect to those erasures as well as results on the design of optimal fusion frames
for this problem.

2. Review of Fusion Frames

Let I be a countable index set, let {Wi}i∈I be a family of closed subspaces in H,
and let {vi}i∈I be a family of weights, i.e., vi > 0 for all i ∈ I. Then {(Wi, vi)}i∈I

is a fusion frame, if there exist constants 0 < C ≤ D < ∞ such that

(2.1) C‖x‖2 ≤
∑

i∈I

v2
i ‖πWi(x)‖2 ≤ D‖x‖2 for all x ∈ H,

where πWi is the orthogonal projection onto the subspace Wi. We call C and D
the fusion frame bounds. The family {(Wi, vi)}i∈I is called a C-tight fusion frame,
if in (2.1) the constants C and D can be chosen so that C = D, and a Parseval
fusion frame provided that C = D = 1. The frame bound C of a tight fusion
frame {(Wi, vi)}n

i=1 in a finite-dimensional Hilbert space H can be interpreted as
the redundancy, since in [9] it was shown that C = (

∑n
i=1 v2

i dim Wi)/ dimH.
Often it will become essential to consider a fusion frame together with a set

of local frames for its subspaces. Recall that {fi}i∈I is a frame for H, if there are
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constants 0 < A ≤ B < ∞ (called the lower and upper frame bound, respectively)
so that for every x ∈ H we have

A‖x‖2 ≤
∑

i∈I

|〈x, fi〉|2 ≤ B‖x‖2.

Let {(Wi, vi)}i∈I be a fusion frame for H, and let {fij}j∈Ji, i∈I be a frame for Wi

for each i ∈ I. Then we call {(Wi, vi, {fij}j∈Ji
)}i∈I a fusion frame system for H.

The constants C and D are the associated fusion frame bounds, if they are the
fusion frame bounds for {(Wi, vi)}i∈I , and A and B are the local frame bounds, if
these are the common frame bounds for the local frames {fij}j∈Ji

for each i ∈ I.
Notice that a frame for H is a fusion frame system with |Ji| = 1 for all i ∈ I, i.e.,
where each subspace is singly generated.

In frame theory an input signal is represented by a collection of scalar co-
efficients that measure the projection of that signal onto each frame vector. The
representation space employed in this theory equals `2(I). However, in fusion frame
theory an input signal is represented by a collection of vector coefficients that repre-
sent the projection (not just the projection energy) onto each subspace. Therefore
the representation space employed in this setting is(∑

i∈I

⊕Wi

)

`2

= {{fi}i∈I |fi ∈ Wi and {‖fi‖}i∈I ∈ `2(I)}.

Let W = {(Wi, vi)}i∈I be a fusion frame for H. In order to map a signal to
the representation space, i.e., to analyze it, the analysis operator TW is employed,
which is defined by

TW : H →
(∑

i∈I

⊕Wi

)

`2

with TW(x) = {viπWi(x)}i∈I .

The synthesis operator T ∗W is given by

T ∗W :

(∑

i∈I

⊕Wi

)

`2

→ H with T ∗W(f) =
∑

i∈I

vifi, f = {fi}i∈I ∈
(∑

i∈I

⊕Wi

)

`2

,

and the fusion frame operator SW for W is defined by

SW(x) = T ∗WTW(x) =
∑

i∈I

v2
i πWi(x).

Interestingly, a fusion frame operator exhibits properties similar to a frame
operator concerning invertibility. In fact, if {(Wi, vi)}i∈I is a fusion frame for H
with fusion frame bounds C and D, then the associated fusion frame operator SW
is positive and invertible on H, and C Id ≤ SW ≤ D Id.

We wish to mention that constructing “good” fusion frames is a subtle task.
One approach to derive a fusion frame for Rd is to start with a frame {fj}n

j=1 for this
space with frame bounds A and B, then split {1, . . . , n} into k sets J1, . . . , Jk, and
define Wi = span{fj}j∈Ji , 1 ≤ i ≤ k. Let C and D be a common lower and upper
frame bound for the frames {fj}j∈Ji for Wi, 1 ≤ i ≤ k. Then {(Wi, 1, {fj}j∈Ji)}k

i=1

is a fusion frame system with fusion frame bounds C
B , D

A (cf. [9, Ex. 2.5]). In order
for this process to work effectively, the local frames have to possess (uniformly)
good lower frame bounds, since these control the computational complexity of re-
construction. However, it is known [10] that the problem of dividing a frame into
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a finite number of subsets each of which has good lower frame bounds is equivalent
to one of the deepest and most intractable unsolved problems in mathematics: the
1959 Kadison-Singer Problem.

For more details on the basic theory of fusion frames we refer the reader to [9].
An introduction to general frame theory is provided by [11].

3. Erasures of Subspaces

In this section we study the erasure of subspaces of a fusion frame, since some-
times the connection to one whole group of sensors might fail for some period of
time, or might be destroyed completely. We first study sufficient conditions for a
fusion frame to be robust with respect to the erasure of subspaces. Secondly, we
derive results on fusion frames optimally designed for those erasures.

3.1. Erasures of Subspaces of an Arbitrary Fusion Frame. We first
recall the following general observation, which is [8, Prop. 3.6].

Proposition 3.1. Let {(Wi, vi)}i∈I be a fusion frame in a finite-dimensional
Hilbert space and let i0 ∈ I. Then {(Wi, vi)}i∈I, i 6=i0 is either a fusion frame or
span{Wi}i∈I,i 6=i0 ( H.

Notice that this result does not hold for an infinite-dimensional Hilbert spaceH.
For instance, let {ei}∞i=1 be an orthonormal basis for H, and let W1 = span{e2i}∞i=1,
W2 = span {e2i+ 1

i e2i+1}∞i=1, and W3 = H. If W3 is deleted, it is easily checked that
{W1,W2} does not form a fusion frame, however it does satisfy span{Wj}2j=1 = H.

Our main result in this subsection provides sufficient conditions on the weights
for a subspace to be deleted yet still leave a fusion frame.

Theorem 3.2. Let {(Wi, vi)}i∈I be a fusion frame with bounds C and D, and
let J ⊂ I. Then the following statements hold.

(i) If
∑

i∈J v2
i > D, then

⋂
i∈J Wi = {0}.

(ii) If
∑

i∈J v2
i = D, then

⋂
i∈J Wi ⊥ span{Wi}i∈I\J .

(iii) If c =
∑

i∈J v2
i < C, then {(Wi, vi)}i∈I\J is a fusion frame with bounds

C − c and D.

Proof. To prove part (i), let x ∈ ⋂
i∈J Wi. Then, using the hypothesis that∑

i∈J v2
i > D and the fact that πWix = x for i ∈ J , we compute

D‖x‖2 <

(∑

i∈J

v2
i

)
‖x‖2 ≤

∑

i∈J

v2
i ‖πWix‖2 +

∑

i∈I\J
v2

i ‖πWix‖2 ≤ D‖x‖2,

hence x = 0.
Now suppose that

∑
i∈J v2

i = D, and let again x ∈ ⋂
i∈J Wi. Then

D‖x‖2 =
∑

i∈J

v2
i ‖πWix‖2 ≤

∑

i∈J

v2
i ‖πWix‖2 +

∑

i∈I\J
v2

i ‖πWix‖2 ≤ D‖x‖2.

Thus
∑

i∈I\J v2
i ‖πWix‖2 = 0, and hence x ⊥ span{Wi}i∈I\J . This proves claim

(ii).
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Finally we show (iii). For any x ∈ H, we have
∑

i∈I\J
v2

i ‖πWi(x)‖2 =
∑

i∈I

v2
i ‖πWi(x)‖2 −

∑

i∈J

v2
i ‖πWi(x)‖2

≥ C ‖x‖2 −
(∑

i∈J

v2
i

)
‖x‖2

= (C − c) ‖x‖2 .

The upper bound is obvious. This completes the proof of part (iii). ¤
First, we remark that the claim in part (iii) is sharp. Indeed, let {ei}n

i=1 be
an orthonormal basis for an n-dimensional Hilbert space H, and equip the set of
subspaces {Wi}n

i=1 defined by Wi = span{ei, ei+1}, i ∈ {1, . . . , n − 1} and Wn =
span{en, e1} with weights vi = 1√

2
. Then {(Wi, vi)}n

i=1 is a Parseval fusion frame,
and, by Theorem 3.2(iii), one subspace can be deleted yet leaving a fusion frame.
However, obviously the deletion of an arbitrary pair of two subspaces destroys the
fusion frame property.

Secondly, we observe that Theorem 3.2 provides an easy construction process of
fusion frames {(Wi, vi)}i∈I which are robust to erasures of an arbitrary set of k sub-
spaces Wi. One possibility would be to build a Parseval fusion frame {(Wi, vi)}i∈I

having the property that the sum of any k weights v2
i is less than one. The previous

example possesses this property for k = 1.
Theorem 3.2 immediately yields the following corollary, which focusses on the

erasure of one single subspace.

Corollary 3.3. Let {(Wi, vi)}i∈I be a fusion frame with bounds C and D.
Then the following statements hold.

(i) For all i ∈ I, we have v2
i ≤ D.

(ii) If there exists i0 ∈ I such that v2
i0

= D, then span{Wi}i∈I,i 6=i0 ( H.
(iii) If there exists i0 ∈ I such that v2

i0
< C, then {(Wi, vi)}i∈I, i 6=i0 is a fusion

frame with bounds C − v2
i0

and D.

It can be easily seen that the converse implications in (ii) and (iii) don’t hold.
Let us consider the following easy counterexample: Let {e1, e2, e3} be an orthonor-
mal basis for H, W1 = W2 = span{e1, e2}, W3 = span{e3}, and v1 = v2 = v3 = 1.
The fusion frame {(Wi, vi)}i∈I has bounds C = 1 and D = 2. Hence v2

3 < D,
but W3 ⊥ W1 and W3 ⊥ W2. Thus the converse implication in (ii) doesn’t hold.
Furthermore, v2

1 ≥ C, but span{W2,W3} = H, thereby giving a counterexample
for the converse implication in (iii).

Corollary 3.4. Let {(Wi, vi)}i∈I be a tight fusion frame with bound C, and
let i0 ∈ I. Then the following conditions are equivalent.

(i) v2
i0

< C.
(ii) {(Wi, vi)}i∈I, i 6=i0 is a fusion frame.

It is worth noticing that this result does not hold for arbitrary fusion frames.
Indeed, in a 2-dimensional Hilbert space H, let A be arbitrarily large and define
W1 = {e1, e2}, W2 = {e1} and v1 = 1, v2 = A. Then {Wi, vi}2i=1 is a fusion frame
with bounds C = 1 and D = A + 1. In particular, v2 = A can be much larger than
C. However, the deletion of W2 still leaves a fusion frame.
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3.2. Optimal Fusion Frames for Erasures of Subspaces. The previous
considerations identified those subspaces whose erasure leaves a fusion frame, i.e.,
each vector can still be reconstructed perfectly. However, since often we cannot
control the erasures, we have to deal with erasures of subspaces which leave an in-
complete set of subspaces. These cases will be examined in the following, where we
restrict to Parseval fusion frames due to their advantageous reconstruction proper-
ties. Also we consider only finite fusion frames, since these are the fusion frames
that actually occur in practise. More precisely, we will characterize those Parse-
val fusion frames which are optimal for erasure of one subspace in the sense that
the maximal distance between original vectors and their reconstructed versions is
minimal.

First, we make the meaning of optimality precise. In our setting we are in-
terested in the worst case behavior of the reconstruction error. This definition of
optimality under erasures has already been studied for frames in [14]. Moreover,
Bodmann has derived results on non-weighted Parseval fusion frames which behave
optimally under the erasure of one single subspace for a fixed number of subspaces,
fixed and equal dimension of all subspaces, and fixed dimension of the Hilbert space
[3, Thm. 13]. For this situation, he also studies multiple erasures [3].

Let I = {1, . . . , n} and define operators Di0 :
(∑

i∈I ⊕Wi

)
`2
→ (∑

i∈I ⊕Wi

)
`2

,
1 ≤ i0 ≤ n by {Di0(f)}i = δi,i0fi0 for all i ∈ I, where f = {fi}i∈I ∈

(∑
i∈I ⊕Wi

)
`2

,
which simulate the erasure of the subspace Wi0 .

Definition 3.5. Let W = {(Wi, vi)}i∈I be a Parseval fusion frame with anal-
ysis operator TW . We define the associated 1-erasure reconstruction error E1(W)
to be

E1(W) = max{‖T ∗WDiTW‖ : 1 ≤ i ≤ n}.
The following result gives a characterization of all Parseval fusion frames with a

prescribed number of subspaces and prescribed – not necessarily equal – dimensions
of the subspaces which behave optimally under one erasure. It is remarkable that
the weights do not have to be equal at all. This differs significantly from the situa-
tion in frame theory, but can be explained easily. The reason for this phenomenon
is that the weights are chosen is such way that the weighted subspaces have “equal
size”, i.e., the weights have to make up for the dimension of the subspaces.

Theorem 3.6. Let W = {(Wi, vi)}n
i=1 be a Parseval fusion frame in a finite-

dimensional Hilbert space H. Then the following conditions are equivalent.

(i) The Parseval fusion frame W satisfies E1(W) = min{E1({(W̃i, ṽi)}n
i=1) :

{(W̃i, ṽi)}n
i=1 is a Parseval fusion frame with dim W̃i = dim Wi for all

1 ≤ i ≤ n.}.
(ii) We have

v2
i =

dimH
n dim Wi

for all 1 ≤ i ≤ n.

Moreover, let x ∈ H and let x̂ denote the reconstructed vector. Then we have the
following error bound

‖x− x̂‖ ≤ dimH
n min{dim Wi : 1 ≤ i ≤ n} ‖x‖ for all x ∈ H.
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Proof. Let W = {(Wi, vi)}n
i=1 be a Parseval fusion frame with analysis oper-

ator TW . Fix i ∈ {1, . . . , n}. Then we have

‖T ∗WDiTW‖ = sup
‖x‖=1

‖T ∗WDiTWx‖ = sup
‖x‖=1

∥∥v2
i πWi

(x)
∥∥ = v2

i sup
‖x‖=1

‖πWi
(x)‖ .

Choosing x ∈ Wi with ‖x‖ = 1 yields ‖πWi(x)‖ = ‖x‖ = 1, which is the maximum
due to

∥∥v2
i πWi

(x)
∥∥ ≤ ‖x‖ = 1 for all x ∈ H. Thus

E1(W) = max{v2
i : 1 ≤ i ≤ n}.

Now let {eij}j∈Ji be an orthonormal basis for Wi for each 1 ≤ i ≤ n. By [8, Thm.
3.2], the sequence {vieij}n, dim Wi

i=1, j=1 is a Parseval frame for H. Employing [7, Sec.
2.3] yields that

1 =

∑n
i=1

∑dim Wi

j=1 ‖vieij‖2
dimH =

∑n
i=1 v2

i dim Wi

dimH ,

hence
n∑

i=1

v2
i dim Wi = dimH.

This implies that there exists some i ∈ {1, . . . , n} with v2
i dim Wi ≥ dimH

n . Since
the dimensions as well as the number of subspaces are fixed, we can conclude that
E1(W) is minimal if and only if

v2
i dim Wi =

dimH
n

for all 1 ≤ i ≤ n.

The moreover-part follows immediately from the arguments above, since the
maximal error is bounded by E1(W) ‖x‖. ¤

For varying dimensions of the subspaces, we obtain the following result which
can be derived from Theorem 3.6 and its proof.

Corollary 3.7. Let {(Wi, vi)}n
i=1 be a Parseval fusion frame in a finite-

dimensional Hilbert space H. Then the following conditions are equivalent.

(i) The Parseval fusion frame {(Wi, vi)}n
i=1 satisfies E1({(Wi, vi)}n

i=1) =
min{E1({(W̃i, ṽi)}n

i=1) : {(W̃i, ṽi)}n
i=1 is a Parseval fusion frame in H.}.

(ii) We have

(3.1) dim Wi = dimH and v2
i =

1
n

for all 1 ≤ i ≤ n.

Moreover, let x̂ be the reconstructed vector x ∈ H under one erasure using the
original reconstruction formula. Then we have the following error bound

(3.2) ‖x− x̂‖ ≤ 1
n
‖x‖ for all x ∈ H.

As can be easily seen from (3.2), an increase in the number of subspaces im-
proves the error bound for the reconstruction. Therefore, provided we allow in-
finitely many subspaces according to (3.1) the optimal weights would equal zero,
which implies that the question of optimal fusion frame systems under erasures is
the wrong question to ask provided we allow infinitely many subspaces.
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4. Erasures of Local Frame Vectors

In this section we are concerned with erasures of local frame vectors, since usu-
ally some sensors die over time due to battery limitations. We first study sufficient
conditions for a fusion frame to be robust with respect to the erasure of subspaces.
Secondly, we derive results on fusion frames optimally designed for those erasures.

4.1. Erasures of Local Frame Vectors in an Arbitrary Fusion Frame.
Our first result provides sufficient conditions on the weights for a prescribed number
of local frame vectors to be deleted in each subspace yet still leave a fusion frame.

Theorem 4.1. Let {(Wi, vi)}i∈I be a fusion frame with bounds C and D. For
every i ∈ I, let {fij}j∈Ji be a Parseval frame for Wi which is robust to ki-erasures
leaving a frame with lower frame bound Ai. For each i ∈ I, let Li ⊂ Ji satisfy
|Li| ≤ ki, and define the set of subspaces {W̃i}i∈I by W̃i = span{fij}j∈Ji\Li

. Then
{(W̃i, vi)}i∈I is a fusion frame for H with bounds (mini∈I Ai)C and D.

Proof. Let x ∈ H and observe that∑

i∈I

v2
i ‖πfWi

x‖2 ≥
∑

i∈I

v2
i

∑

j∈Ji\Li

|〈πWix, fij〉|2 ≥
∑

i∈I

Aiv
2
i ‖πWix‖2

≥
(

min
i∈I

Ai

) ∑

i∈I

v2
i ‖πWix‖2 ≥

(
min
i∈I

Ai

)
C ‖x‖2.

Furthermore, D is obviously still an upper bound. ¤

This result – as Theorem 3.2 – can be used to explicitly construct fusion frames
robust to a specified number of erasures. For this, first the subspaces have to be
defined. Then for each subspace we choose a Parseval frame which is robust to a
prescribed number of erasures. Here we might use [7] to even choose these Parseval
frames to be equal-norm. Then the theorem provides us with fusion frame bounds
for the fusion frame after the erasures happened.

4.2. Optimal Fusion Frames for Erasures of Local Frame Vectors.
Here we are interested in fusion frame systems, which are optimally robust with
respect to the erasure of one local vector. As in Section 3.2, we restrict our analysis
to finite Parseval fusion frames and to local Parseval frames.

First we make the meaning of optimality precise. Again we are interested in
the worst case behavior of the reconstruction error.

For this, let W = {(Wi, vi, {fij}mi
j=1)}n

i=1 be a Parseval fusion frame system
with local Parseval frames. Let T denote the analysis operator of the associated
fusion frame, Ti the analysis operator for the local frames for all 1 ≤ i ≤ n, and
define a vector of matrices (D1, . . . , Dn) ∈ Πn

i=1M(mi ×mi,R) in such a way that
there exists one i0 ∈ {1, . . . , n} so that Di0 = (dk,l)1≤k,l≤n with dk,l = δk,j0δl,j0 for
some j0 ∈ {1, . . . , mi0} and all other matrices are zero-matrices. This simulates the
erasure of the vector fi0j0 . We denote the set of admissible vectors of matrices by
D.

Definition 4.2. Let W = {(Wi, vi, {fij}mi
j=1)}n

i=1 be a Parseval fusion frame
system with local Parseval frames. Let T denote the analysis operator of the associ-
ated fusion frame, and Ti the analysis operator for the local frames for all 1 ≤ i ≤ n.
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Then we define the associated 1-erasure reconstruction error E1(W) to be

E1(W) = max{‖
n∑

i=1

v2
i T ∗i DiTi‖ : (D1, . . . , Dn) ∈ D}.

The following result gives a characterization of all Parseval fusion frames with
prescribed number of local frame vectors and prescribed – not necessarily equal –
dimensions of the subspaces which behave optimal under the erasure of one local
frame vector.

Theorem 4.3. Let W = {(Wi, vi, {fij}mi
j=1)}n

i=1 be a Parseval fusion frame sys-
tem with local Parseval frames {fij}mi

j=1. Then the following conditions are equiva-
lent.

(i) The Parseval fusion frame system W satisfies E1(W) = min{E1({(W̃i, ṽi,

{f̃ij}mi
j=1)}n

i=1) : {(W̃i, ṽi, {f̃ij}mi
j=1)}n

i=1 is a Parseval fusion frame system
with local Parseval frames satisfying dim W̃i = dim Wi for all 1 ≤ i ≤ n.}.

(ii) We have

‖fij‖2 =
dim Wi

mi
for all i ∈ I, j ∈ Ji.

Moreover, let x̂ be the reconstructed vector x ∈ H under one erasure using the
original reconstruction formula. Then we have the following error bound

‖x− x̂‖ ≤ max{dim Wi : 1 ≤ i ≤ n}
min{mi : 1 ≤ i ≤ n} ‖x‖ for all x ∈ H.

Proof. Let Ti denote the analysis operator for {fij}mi
j=1, i = 1, . . . , n. Fix the

index of the subspace in which a local frame vector will be deleted and denote it
by i0. Further, let j0 ∈ {1, . . . ,mi0} denote the index of the vector being deleted.
Then, for each x ∈ H,

n∑

i=1

v2
i T ∗i DiTix =

n∑

i=1

v2
i T ∗i (δi,i0δj,j0 〈x, fij〉)mi

j=1 = v2
i0 〈x, fi0j0〉 fi0j0 .

Hence

‖
n∑

i=1

v2
i T ∗i DiTi‖ = sup

‖x‖=1

‖v2
i0 〈x, fi0j0〉 fi0j0‖

= v2
i0‖fi0j0‖ sup

‖x‖=1

| 〈x, fi0j0〉 |

= v2
i0‖fi0j0‖2.

Thus for W = {(Wi, vi, {fij}mi
j=1)}n

i=1 we have that

E1(W) = max{v2
i ‖fij‖2 : 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

By [7, Sec. 2.3], we obtain
mi∑

j=1

‖fij‖2 = dim Wi for all 1 ≤ i ≤ n,

which implies that there exists some i ∈ {1, . . . , n} with ‖fij‖2 ≥ dim Wi

mi
for all j.

Since the dimensions as well as the number of local frame vectors are fixed, we can
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conclude that E1(W) is minimal if and only if

‖fij‖2 =
dim Wi

mi
for all i ∈ I, j ∈ Ji.

The moreover-part follows immediately from the arguments above, since the
maximal error is bounded by E1(W) ‖x‖. ¤

For varying dimensions of the subspaces, we obtain the following result which
can be derived from Theorem 4.3 and its proof.

Corollary 4.4. Let W = {(Wi, vi, {fij}mi
j=1)}n

i=1 be a Parseval fusion frame
system with local Parseval frames {fij}mi

j=1. Then the following conditions are equiv-
alent.

(i) The Parseval fusion frame system W satisfies E1(W) = min{E1({(W̃i, ṽi,

{f̃ij}mi
j=1)}n

i=1) : {(W̃i, ṽi, {f̃ij}mi
j=1)}n

i=1 is a Parseval fusion frame system
with local Parseval frames.}.

(ii) We have

(4.1) dim Wi = 1 and ‖fij‖2 =
1

mi
for all i ∈ I, j ∈ Ji.

Moreover, let x̂ be the reconstructed vector x ∈ H under one erasure using the
original reconstruction formula. Then we have the following error bound

(4.2) ‖x− x̂‖ ≤ 1
min{mi : 1 ≤ i ≤ n} ‖x‖ for all x ∈ H.

As can easily be seen from (4.2), an increase in the number of local frames in
each subspace improves the error bound for the reconstruction. Therefore, provided
we allow infinitely many local frame vectors, according to (4.1) the optimal norms
would equal zero, which implies that the question of optimal fusion frame systems
under erasures does not make much sense allowing infinitely many local frame
vectors. In particular it is the wrong question to ask in an infinite-dimensional
Hilbert space.
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