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Abstract Anisotropic representation systems such as curvelets lzeatlets have
had a significant impact on applied mathematics in the lasidie The main reason
for their success is their superior ability to optimallyak® anisotropic structures
such as singularities concentrated on lower dimensionaleelsled manifolds, for
instance, edges in images or shock fronts in solutions oépart dominated equa-
tions. By now, a large variety of such anisotropic systenssleen introduced, for
instance, second generation curvelets, bandlimited Etgaand compactly sup-
ported shearlets, all based on a parabolic dilation ogmrafihese systems share
similar approximation properties, which is usually prowena case-by-case basis
for each different construction. The novel concept of paliabmolecules, which
was recently introduced by two of the authors, allows for Hieeh framework en-
compassing all known anisotropic frame constructions thaseparabolic scaling.
The main result essentially states that all such systenre skrailar approximation
properties. One main consequence is that at once all theatlEsiapproximation
properties of one system within this framework can be deddoe virtually any
other system based on parabolic scaling. The present pagie&ates and surveys
recent results in this direction.

1 Introduction

Wavelets have had a tremendous impact on applicationsriegan efficient repre-
sentation system such as image compression or PDE solv@rgudr, multivariate
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data does typically exhibit the distinct property of beimgvgrned by anisotropic
features, which wavelets — as an isotropic system — are pabda of resolving op-
timally in the sense of optimal approximation rates. In itnggsciences, this fact is
even backed up by neurophysiology, since it is today gelyeratepted that neurons
are highly directional based, thereby reacting most stgotogcurvelike structures.

This observation has led to the introduction of various hospresentation sys-
tems, which are designed to accommodate the anisotropicenaf most multi-
variate data. The considered model situation are functidtissingularities along
lower dimensional embedded manifolds such as edges ormaysaging applica-
tions, with the goal to provide optimally sparse approxiore of these objects.
Some of the most well-known nowadays ternti@ctional representation systems
are ridgelets [4], curvelets [5], and shearlets [19, 28}thvie introduction of such
a variety of systems the appeal has grown to extract the lymugiprinciples of
these new constructions and build an abstract common frankewhich can unite
many of these systems ‘under one roof’. The framework shbeldeneral enough
to include as many constructions as possible, while on therdtand also be spe-
cific enough to still capture their main features and praperiSuch a framework
would help to gain deeper insights into the properties ohsystems. Moreover, it
bears an obvious economical advantage. Up to now the prepefteach new sys-
tem, e.g. their approximation rates of anisotropic featuh@ave been proven more
or less from scratch, although the proofs often resembleaanéher in many ways.
From the higher level viewpoint provided by such a framewitxecomes possible
to provide proofs, which build upon abstract properties aredtherefore indepen-
dent of the specific constructions. Thus, results can bélestad for many systems
simultaneously.

The introduction oparabolic moleculeg 2011 by two of the authors [17] was a
first step in this direction. A system of parabolic molecudas be regarded as being
generated from a set of functions via parabolic dilationstions and translations.
Each element in a system of parabolic molecules is therefanerally associated
with a certain scale, orientation and spatial location. Géetral conceptual idea is
now to allow the generators to vary, as long as they obey @pbesl time-frequency
localization, which also explains the terminology ‘molkss).

At the heart of this is the fundamental observation that foremost the time-
frequency localizations of the functions in a system, widekermine its properties
and performance. This concept\driable generatorswhere in the extreme case
every element is allowed to have its own individual genatasoa key feature of
the framework and gives it a great amount of flexibility. Atitatial flexibility is
achieved byparametrizationgo allow generic indexing of the elements. Another
fruitful idea is the relaxation of the rigid vanishing montenditions imposed
on the generators of most classical constructions by rieguihe moments to only
vanish asymptoticallyat high scales without changing the asymptotic behavior of
the approximation.

It was shown in [17] that the concept of parabolic moleculas anify shear-
based and rotation-based constructions under one roofrticplar, it enables to
treat the classical shearlets and curvelets simultangoaighough these specific
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constructions are based on different construction prlasig-or curvelets the scal-
ing is done by a dilation with respect to polar coordinated #re orientation is
enforced by rotations. Shearlets on the other hand are lmasedfine scaling of
a single generator and the directionality is generated byatition of shear matri-
ces. As an example application, in [17] parabolic moleculese used to show that
these systems feature a similar approximation behavierebly not only unifying
the approximation results for curvelets [5] and shearl2@s 7], but proving opti-
mal sparse approximations for a much larger class of sysdtesging to the class
of parabolic molecules.

Our exposition is organized as follows. We begin with a gehiatroduction to
the problem of sparsely representing multivariate dataeictiBn 2. The main issue
with such data is the possible occurrence of anisotropia@imena, which impair
the otherwise good performance of classical wavelet systdinis motivates the
need for so-called directional representation systemmgstlassical constructions
of which we present in the next Section 3, namely classicalatats and shear-
lets. Here we emphasize their similar approximation pengorce, which is almost
optimal for cartoon-like images.

After this exposition we turn to parabolic molecules as &wing framework.
We first establish the basic concepts in Section 4 and statenam result, namely
that the cross-Gramian of two systems of parabolic moleoceéibits a strong off-
diagonal decay. This property will become essential iniSed&, where we discuss
the approximation behavior of parabolic molecules. Befoowing there, however,
we pause for a while in Section 5 to illustrate the versgtiit the framework by
giving some examples. After we have convinced the readehneif aipplicability,
we then turn to the section on approximation, where we eisdlgnprove that any
two systems of parabolic molecules, which are consistethhawme sufficiently high
order, exhibit the same approximation behavior.

2 Representation of Multivariate Data

Most applications require efficient encoding of multivégialata in the sense of
optimal (sparse) approximation rates by a suitable reptaien system. This is
typically phrased as a problem of bésterm approximation (see Subsection 2.1).
The performance of an approximation scheme is then usuzdilyaed with respect
to certain subclasses of the Hilbert spaééR?), which is the standard continuum
domain model fod-dimensional data, in particular, in imaging science. Aabel
orated upon before, the key feature of most multivariata éathe appearance of
anisotropic phenomena. Hence such a subclasg(@) is required to provide a
suitable model for this fact, which, fak= 2, is fulfilled by the subclass of so-called
cartoon-like images as introduced in Subsection 2.2. Ittkan be easily seen that
wavelets do not deliver optimal approximation rates (Satise 2.3), which then
naturally leads to the theory of directional representesigstems.
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In the sequel, we will use the ‘analyst’s brackets’:= /1 + x2 for x € R. Also,
for two quantitiesA, B € R, which may depend on several parameters we shall write
A < B, if there exists a consta@t> 0 such thaA < CB, uniformly in the parameters.
If the converse inequality holds true, we write> B and if both inequalities hold
we shall writeA < B.

2.1 Sparse Approximation

Let us start by briefly discussing some aspects of approiomalheory. From a
practical standpoint, a functioh € L2(R?) is a rather intractable object. In order
to analyzef, the most common approach is to represent it with respeabrites
representation syste(m, ), ., C L2(R?), i.e., to expand as

f=73 cm, 1)
AEN

and then consider the coefficiems € R. In practice we have to account for noise,
hence it is necessary to ensure the robustness of such aeafation. This leads to
the notion of a frame (cf. [9, 8]).

A frame is a generalization of the notion of an orthonormali#o include re-
dundant systems, while still ensuring stability. More [sely, a systenim, )yca C
L?(R?) forms aframefor L2(R?), if there exist constants@ A < B < o such that

AIfIE< S [(f,my)[> <B|f|f forall f e L*(R?).
AEA

A frame is calledight, if A= B is possible, andParseval if A= B = 1. Since the
frame operator SL?(R?) — L?(R?) defined bySf= ¥, (f,m,)m, is invertible,
it follows that one sequence of coefficients in (1) — note tbaa redundant system
this sequence is not unique anymore — can be computed as

¢ =(f,Stm), AeA,

where(S™tmy), is usually referred to as theanonical dual frameThis particular
coefficient sequence has the distinct property that it mirésthe/,-norm.

When representing with respect to a framgm, ), € L?(R?), we are confronted
with yet another problem. Since in real world applicatiomnitely many coeffi-
cients are infeasible, the functidrhas to be approximated by a finite subset of this
system. Lettind\ be the number of elements allowed in this approximation, lre o
tain what is called aN-term approximatioffior f with respect tqm, ),. Thebest
N-term approximationtypically denoted byfy, is optimal among those in terms of
a minimal approximation error and is defined by

fy = argmin[|f — 5 camy | subjectto Ay <N.
(© reny AEAN
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An appropriate measure for the approximation behavior gkgesn(m, ), for a
subclassz, say, ofL2(R?) is the decay of th&2-error of the besN-term approxi-
mation|| f — fn||2 asN — oo, thus theasymptotic approximation raté\s discussed
before, the representation system might not form an ortimoatbasis in which case
the computation of the belt-term approximation is far from being understood. The
delicacy of this problem can for instance be seen in [13]. #idsl approach to cir-
cumvent this problem is to consider instead Nwerm approximation by thél
largest coefficient$cy ), 4. It is evident that this error also provides a bound for
the error of besN-term approximation.

There indeed exists a close relation between Nhgerm approximation rate
achieved by a frame, and the decay rate of the correspondingefcoefficients.
By measuring this decay rate in terms of the(quasi)-norms fop > 0, the fol-
lowing lemma shows that membership of the coefficient secgiém an/,-space
for small p implies ‘good’ N-term approximation rates. For the proof, we refer to
[10, 27].

Lemma 1.Let f = 3 c,m, be an expansion of € L2(R?) with respect to a frame
(my)aen- Further, assume that the coefficients satigfy), € ¢2/(%+1 for some
k > 0. Then the best N-term approximation rate is at least of oidef, i.e.

I —fllp SNTK.

2.2 Image Data and Anisotropic Phenomena

To model the fact that multivariate data appearing in apphos is typically gov-
erned by anisotropic features — in the 2-dimensional casélicear structures —,
the so-callectartoon-like functionsvere introduced in [11]. This class is by now
widely used as a standard model in particular for naturagigsalt mimics the fact
that natural images often consist of nearly smooth par@raggd by discontinuities,
which is illustrated in Figure 2.2.

The first rigorous mathematical definition was given in [14§l &xtensively em-
ployed starting from the work in [5]. It postulates that ineagconsist oC2(R?)-
regions separated by smodif(R)-curves. This leads to the next definition (see
also Figure 2.2).

Definition 1. Theclass&2(IR?) of cartoon-like functionss the set of functions :
R? — C of the form
f = fo+ fixe,

whereB C [0,1]2 is a set withdB being a continuous and piecewigé-curve with
bounded curvature arfgle C2(R?) are functions with supfp [0, 1]? and||fi||c2 <
1foreach =0,1.

We remark that by now several extensions of this model haea b@roduced
and studied, starting with the extended model in [26].
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@ (2a) (2b)

Fig. 1 (1): lllustration of the appearance of ‘cartoon-like pantsnatural images. (2): lllustra-
tion of the fact that the human brain is able to deduce the éfadg) just from its ‘cartoon-like’
ingredients (2b).

Fig. 2 Example of a cartoon-like function.

Having agreed on a suitable subclass of functions, one migltask whether
there exists a maximal asymptotic approximation rate fggath a notion of opti-
mality. Indeed, such a benchmark result was derived by DofofiL1].

Theorem 1 ([11]). Let (M) )yen € L?(R?). Under the assumption of polynomial
depth search for the representation coefficients used ifNtterm approximation,
the associated asymptotic approximation rate of soraes?(R?) satisfies

|f—fn)3=N2 asN-— c.

It is in this sense that a system satisfying this approxiomatate is coined to
deliveroptimally sparse approximations
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2.3 2D Wavelet Systems

Nowadays, wavelet systems are widely utilized represiemtaystems both for the-
oretical purposes as well as for engineering applicatiforsinstance for the de-
composition of elliptic operators or for the detection obaralies in signals. Their
success stems from the fact that wavelets deliver optimaisspapproximations
for data being governed by isotropic features — which is inipaar the case for
elliptic operator equations whose solutions may exhibibpsingularities (for in-
stance if re-entrant corners are present in the computdtdimain) as well as in
the 1-dimensional setting — and from the fast numericaizatdbn of the wavelet
transform.

Let us first recall a certain type of wavelet systenLf{R?), obtained by the
following tensor product construction, see e.g. [30] fawadls. Starting with a given
multiresolution analysis of?(R) with scaling functiong® € L?(R) and wavelet
@* € L2(R), for every indexe = (e1,&) € E, E = {0,1}?, the generatorg/® €
L?(R?) are defined as the tensor products

Yo = ¢ %

Definition 2. Let ¢°, @' € L?(R) andy® € L?(R?), e € E, be defined as above. For
fixed sampling parameters> 1, ¢ > 0 we define theliscrete wavelet system

W (¢ @ 1,0) = {Lp(o*‘))(-—ck) : keZz}
U{rjtpe(rj~fck) S ec E\{(O,O)},jeNo,kGZZ}.
The associated index set is given by
A" =1((0,0),0,k) : ke Z2}U{(e j,k) : e E\{(0,0)}, | € No, ke Z2}.

Next, we recall the definition of vanishing moments for unigte wavelets,
which says that the associated wavelet system annihilalgagmials up to some
degree.

Definition 3. A functiong € L?(R) is said to possedd vanishing moments, if
/ g(x)x*dx=0, forallk=0,...,M—1.
R

It is well known that this property can be characterized blypomial decay
near zero of the associated Fourier transform. For the coenee of the reader, we
provide the short proof.

Lemma 2. Suppose that g L>(R)NC(R) is compactly supported and possesses M
vanishing moments. Then

16(&)] < min(1, &)™
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Proof. First, note that, sincg is continuous and compactly supportegd; L*(R)
and henceg is bounded. This shows that the claimed inequality hold$&pg 1.
Let nowé € Rsatisfy|&| > 1. For this, observe that, up to a constant,

/Rg(x)xkdx: <%> kQ(O).

Sinceg possesseM vanishing moments, it follows that all derivatives of order
k < M of § vanish at 0. Furthermore, sincgis compactly supported, its Fourier
transform is analytic. Thus

a8 <&M,

which proves the claim. a

We now assume that®, p* € L2(R) satisfy ¢°, ¢! € C*(R) and that there are
0 < aand 0< a; < ap such that

suppg’ C [~a,a] and suppp’ C [~ap,a]\[~ay,a).

These conditions are fuffilled, for instancegf, @' € L?(R) are the generators of
a Lemarié-Meyer wavelet system. In this case, it is welthkn that the associated
tensor product wavelets are indeed suboptimal for appratiam of anisotropic fea-

tures modeled by cartoon-like functions.

Theorem 2.For f € £2(R?), the wavelet system {§°, ¢*; 7, c) provides an asymp-
totic L2-error of best N-term approximation given by

|f—ff3=N"t asN— c.

3 Directional Representation Systems

The reason for the failure of wavelets to provide optimafigise approximations of
cartoon-like functions is the fact that wavelets are inh#yeisotropic objects and
thus not optimally suited for approximatiraisotropicobjects. To overcome this
problem, in recent years various directional representaystems were introduced,
among which are ridgelets, curvelets, and shearlets, t@njasha few. Their main
advantage lies in their anisotropic support, which is musttdp suited to align with
curvilinear structures (see Figure 3), thereby alreadyitinely promoting a fast
error decay of the best-term approximation.

In this section, we now first introduce the second generationelet system,
which was in fact also the first system to provide (almostjmally sparse ap-
proximations of cartoon-like functions (cf. Subsectiof)3This is followed by a
discussion of different versions of shearlets in Subsa@&ia.
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1) )
Fig. 3 Approximation of a curve by isotropic-shaped (1) and amggt-shaped (2) elements.

3.1 Second Generation Curvelets

Second generation curvelets were introduced in 2004 by &aadd Donoho in the
seminal work [5]. Itis this curvelet system which is refefte today when curvelets
are mentioned. The anisotropy of these systems is indut¢edhis system by en-
forcing a parabolic scaling so that the shape of the suppsdrtially follows the
parabolic scaling lawlengtt? ~ width'’. Intuitively, this seems a compromise be-
tween the isotropic scaling, as utilized for wavelets, aralisg in only one coordi-
nate direction, as utilized for ridgelets. However, thespeais much deeper, since
this law is particularly suited for approximatitf-singularity curves, which is the
type of curves our model is based upon.

We now describe the original construction. For thisVieandV be two window
functions, which are both real, nonnegati@, and supported ir(%,z) and in
(—1,1), respectively. We further require that these windows Batis

- 11
EZW(ZJr)2 =1forallre R, and ;ZV t—0)%=1forallte <—, —> :
75 - 2’2

For every scalg > 0, we now define the functiong; o) in polar coordinates by

Ti.00)(1,@) i= 2734w (27In) v (211/2)

Forj € Z and8 € T, the parabolic scaling matrik; and the rotation matrikg are
defined by

(20 ~ (cog6) —sin()
A= ( 0 21/2) and R = (sin(e) cog(6) )

The definition of curvelets then reads as follows:
Yk () = Y00 (Rej‘g : _Xj,k) ,

where8; , = £271/2, x; = Ajlk, and(j,?,k) € A% with set of curvelet indices
given by
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A0 {(j,e,k) ezt j>0, (= _2U/2J-l,...,2U/2J-l}. )

With appropriate modifications for the low-frequency c@se0 — for details we
refer to [7] —, the system
ro:={y:1en’

constitutes a Parseval frame fbof(R?), which is customarily referred to as the
frame ofsecond generation curvelei/hen identifying frame elements oriented in
antipodal directions, this system becomes a frame withvalaled elements.

Let us next discuss the approximation propertieg 8fproved in [5]. Ignor-
ing log-like factors, this frame indeed attains the optimaiievable approximation
rate for the class of cartoon-like functiof(R?). Moreover, this rate is achieved
by simple thresholding, which is even more surprising, sitfus approximation
scheme is intrinsically non-adaptive.

Theorem 3 ([5]). The second generation curvelet fram@ provides (almost) opti-
mal sparse approximations of cartoon-like functions &£2(R?), i.e.,

I —fnll3 SN“2(logN)®  as N— o, (3)

where {; is the nonlinear N-term approximation obtained by choosirgN largest
curvelet coefficients of f.

The implicit constant in (3) only depends on the maximal eturve of the singular-
ity curve of f, the number of corner points, and the minimal opening angtaé
corners. In particular, the approximation rate is uniformeroall functions whose
singularity curve has maximal curvature bounded by a fixetstzmt.

Finally we remark that due to the construction the frame eletsiofi © are band-
limited functions. Up to now no constructions of compactippgorted curvelets are
known.

3.2 Shearlet Systems

Shearlets were introduced in 2006 [19] as the first direelicgpresentation system
which not only satisfies the same celebrated propertiesroétats, but is also more
adapted to the digital realm. In fact, shearlets enable féedrntreatment of the con-
tinuum and digital setting, which allows implementatioagtful to the continuum
domain theory. This key property is achieved through wtlan of a shearing ma-
trix instead of rotations as a means to parameterize otientahereby preserving
the structure of the integer grid. The resulting differdéimds of frequency domain
are illustrated in Figure 4.

We next introduce a selection of the variety of availableaslet systems, namely
bandlimited shearlets (Subsection 3.2.1), the so-calieabth Parseval frames of
shearlets (Subsection 3.2.3), and compactly supportetiste(Subsection 3.2.2).
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1

@ @)
Fig. 4 Frequency tiling induced by a curvelet system (1) and a $tesystem (2).

For a more detailed exposition of shearlets than given hele@wefer to the book
[28].

3.2.1 Bandlimited Shearlets

We first present the classical cone-adapted shearlet catistr of band-limited

11

shearlets presented in [19]. It is worth emphasizing thattduhe shearing operator,

the frequency domain needs to be split into four cones torerssualmost uniform

treatment of the different directions, which comes natyrfalr rotation as a means

to change the orientation (compare Figure 4).
First, letys, Yo € L2(R) be chosen such that

1 1 11
= U=z 1,1
supp%C[ > 16}U[16’2]’ supp, C [-1,1],
zomil(z_jw)\z:l for|w|2},
iz 8
and
2lis2l _ 5
lllz(ZU/szJH)‘ =1 for|w| <1
|=—2li/2]

Then the classical mother sheanjets defined by

(&) = Gu(E0) 0o (%) |

For j,¢ € Z let now the parabolic scaling matri and the shearing matr& be

defined by _
(220 (17
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Further, for a domai2 C R? let us define the space
L2(Q)Y = {f € L%(R?) : suppf c Q}.
It was then shown in [19] that the system
50 {231/4¢(S£Aj —k): j>0,0=—2U/2 ... 2li/2 ke ZZ}

constitutes a Parseval frame for the Hilbert spiacgz’) on the frequency cone
1 1&
C =& &>, 57 <1;.
{ 1l 8" [&]
By reversing the coordinate axes, also a Parseval f&&hfer L2(¢”)", where

1[4
‘5’:{5: &l > =, 5 <1%,
82| = 5 B
can be constructed. Finally, we can consider a Parsevakfram

@ :={o(-—k): kez?}

\
for the Hilbert spacé? [—%, %} 2) . Combining those systems, we obtain ban-
dlimited shearlet frame
s:=3%slue.

In [20], it was shown that bandlimited shearlet frames aahi@most) optimal
sparse approximations for elementss3i(R?), similar to curvelets and in fact even
with the samelog-like factor.

Theorem 4 ([20]). The bandlimited shearlet fram& provides (almost) optimal
sparse approximations of cartoon-like functions £2(R?), i.e.,

|1 = fn[3 SN2(10gN)*  as N— e,

where {; is the nonlinear N-term approximation obtained by choosigN largest
shearlet coefficients of f.

3.2.2 Smooth Parseval Frames of Shearlets
Following [22], a slight modification of the bandlimited shket construction,

namely by carefully glueing together boundary elementaglbe seamlines with
anglert/4, yields a Parseval frame with smooth and well-localizednents.
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3.2.3 Compactly Supported Shearlets

In 2011, compactly supported shearlets were introducechleyod the authors and
her collaborators in [27]. Currently known constructioiscompactly supported
shearlets involve separable generators, i.e.,

Yxe, %) == Yn(x)Pa(X2), P(x1,%2) = PY(X2,X1). (4)

with a wavelety; and a scaling functiogl,. Following [27], the cone-adapted dis-
crete shearlet system is then defined as follows, whgre diag2/,2//2) as before

andA; := diag(21/2,2]),

Definition 4. For some fixed sampling parameter 0, thecone-adapted discrete
shearlet system Sfd, ¢, ;c) generated by, i, § € L*(R?) is defined by

SH(@, @, fi;c) = ®(;c) UW(W;0) UP(;c),
where

®(¢;c) = {0k = (- — k) 1 k € cZ?},
W(ic) = {oj = 2P(SA] - —K) 1 | > 0,]¢] < [2/?] ke cz?},
Y(P;c) = {Gj k= 22/4P(STA] - —K) 1 ] > 0, || < [2/?],k e cZ?}.

Under certain assumptions @ny,  this shearlet system forms a frame with
controllable frame bounds [24].

In [27], it was shown that compactly supported shearlet &snunder assump-
tions on the separable behavior and the directional vamgghioments of the gener-
ators, also achieve (almost) optimal sparse approximafimrelements of2(R?).

Theorem 5 ([27]).Let c> 0 and let, , ¥ € L2(R?) be compactly supported. Sup-
pose that, in addition, for alf = (&1, &) € R?, the shearletp satisfies

(i) [@(&)] < Camin(1, |&|7) min(1,|&|~Y) min(1,|&2[Y) and

. ~y

(i) | % 0(6)] < (&)l (1+8)

wherea >5,y> 4, he Ll(R), and G is a constant, and suppose that the shearlet
Y satisfies (i) and (ii) with the roles of; and &, reversed. Further, suppose that
SH(@, Y, ;) forms a frame for B(R?).

Then the shearlet frame SH, i, ; ¢) provides (almost) optimal sparse approx-
imations of cartoon-like functionsd £2(R?), i.e.,

| f—fnl2 SN“2(logN)®  as N— oo,

where {; is the nonlinear N-term approximation obtained by choosirgN largest
shearlet coefficients of f.



14 P. Grohs, S. Keiper, G. Kutyniok, and M. Schafer

With this theorem we end our presentation of directionatespntation systems,
although there do exist more constructions. It is a strikang, that the three pre-
sented examples all exhibit the same approximation behaalimough they are
construction-wise quite different. The framework of parbmolecules, which we
will present in the subsequent sections, will reveal thedamental common in-
gredients in these systems which ensure (almost) optinaasempproximations of
cartoon-like functions.

4 Parabolic Molecules

The concept of parabolic molecules took shape by distilivegessential principles,
which underly many of the newly constructed directionaresgntation systems, in
particular curvelets and shearlets. It provides a framkywehich comprises many
of these classic systems, and allows the design of new cmtistns with pre-defined
approximation properties.

Moreover, the approximation properties of some new systenusually proven
more or less from scratch. By adopting the higher level viewpof time-frequency
localization, the parabolic molecule framework is very gieh and independent of
specific constructions. This has the advantage, that itlesabunified treatment of
many systems. In particular, it can be used to establishoappation results for
many systems simultaneously.

A system of parabolic molecules consists of functions, iokthfrom a set of
generators via parabolic dilations, rotations and traiwsgia. Similar to curvelets,
each function in a system of parabolic molecules is theeef@turally associated
with a certain scale, orientation and spatial location.

A central feature of the framework, which explains the terohogy ‘molecules’,
is the concept of variable generators: In order to gain fiéilihe generators are
allowed to vary, as long as they obey a prescribed time-Brqu localization. At
the heart of this is the fundamental observation that itiefmst the time-frequency
localization, which determines the approximation projsrand performance of a
system.

A nice side-effect of this less rigid construction prineijs the fact that the strict
vanishing moment conditions, usually imposed on the geoesaf classical con-
structions, can be relaxed without changing the asympapjizoximation behavior
of the system. It suffices to require the moments to vanismasytically at high
scales.

4.1 Definition of Parabolic Molecules

Let us now delve into the details of the framework of parabwlolecules. A system
of parabolic molecules is a family of functiorie, ), obtained from a set of
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generators via parabolic dilations, rotations and trdiwgla. Each functiomm, is
therefore associated with a unique point in the parametaredfy sometimes also
referred to as phase space, given by

P:=R, x T x R?

where a poinp = (s, 8,x) € P specifies a scale’Z R, an orientatior® € T, and
a locationx € R?.

The relation between the indéxof a moleculem, and its locatior(s,, 6, ,X) )
in the parameter spadkeis described via so-called parametrizations.

Definition 5. A parametrizationconsists of a paifA, @, ), whereA is a discrete
index set andb, is a mapping

¢A:A4)P, /\}—)(S)\,e)\,X)Q7
which associates with eaéhe A ascale g, adirection8 and alocation x, € R2.

By using parametrizations, the actual indices of the mdéscean be de-coupled
from their associated locationsi This gives the freedom to assign generic indices
to the molecules, a feature, which is essential to includgesys into the frame-
work, whose constructions are based on different prinsjgdike e.g. shearlet-like
and curvelet-like systems. Another benefit of this appraac¢hat a parameteriza-
tion does not have to sample phase space in a regular fagtieronly property it
needs to satisfy for our results to be applicable is consigtas defined below in
Subsection 6.2.

Before defining parabolic molecules we fix the following rima. As defined
in Section 3, leRg denote the rotation matrix by an andleandA; the parabolic
scaling matrix associated with> 0.

Definition 6. Let A be a parametrization. A familym, ), of functionsm, €
L?(R?) is called afamily of parabolic moleculesf order(R,M, Ny, N,) if it can be
written as

my (x) = 23348 (A, Ry, (x—x3))

such that
0880 (6)| S min (1279 + &+ 29208)) " le) e N 6)

for all |B] < R. The implicit constants shall be uniform overe A.

Remark 1To simplify notation we did not explicitly refer to the utikd parametri-
zation®,.

Notice that a system of parabolic molecules, ), is generated by parabol-
ically scaling, rotating and translating a set of genesataf*)), . In contrast
to many classical constructions, where the set of gener&arsually small, each
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molecule is allowed to have its own individual generator. ¥y require these
generators to uniformly obey a prescribed time-frequeacsglization.

Let us remark, that for convenience the time-frequency itimms in the defini-
tion are formulated on the Fourier side. Thus, the nunfibactually describes the
spatial localizationM the number of directional (almost) vanishing moments and
N1, N, describe the smoothness of an elenmant

According to the definition the frequency support of a paliaboolecule is con-
centrated in a parabolic wedge associated to a certaintatiemn, and in the spatial
domain its essential support lies in a rectangle with pdi@abaepect ratio. For illus-
tration purposes, the approximate frequency support ofpmrabolic molecules at
different scales and orientations is depicted in Figure 5.

1) )

Fig. 5 (1): The weight function milf1,2% + 18] +279218) " (€)M (&) M for s, = 3,
M =3, N1 = N2 = 2. (2): Approximate Frequency support of a correspondingeoute i, with
9)‘ = 7T/4

Changing into polar coordinates we obtain the represemtati
iy (r,¢) =273 /4aY) (2—SA rcog¢ +6)),2-%/?rsin(¢ + 6 )) exp(27i(x,,€)),
which directly implies the estimate

i (6)] S 2724 min(1,27% (1+1)V (279 1) ™M (279 2r sin(¢ + 6,)) .

4.2 Index Distance

An essential ingredient for the theory is the fact that theapeeter spac® can be
equipped with a natural (pseudo-)metric. It was first introed by Hart-Smith [29],
albeit in a different context, and is therefore sometimemeés theHart-Smith
pseudo metricLater it was also used in [3].

Definition 7. Following [3, 29], we define for two indicek, i theindex distance
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w(A, ) =295 (14-2%d (A, ),

and
d(A, 1) :=16) — Oul*+ Xy —Xul* + [{en, X0 — Xu).

whereAq = argmir(s,,s,) ande, = (cog(6),sin(6y)) .

Remark 2The notationw(A, i) is a slight abuse of notation, sineeis acting on
IP. Therefore it should read

W(PA(A), ®Pa (1))

for indicesA € A, y € A with associated parametrizatiof®s , @,. In order not to
overload the notation we stick with the shorter but slighelys accurate definition.

Remark 3We also mention that there is a slight inaccuracy in the ablefiaition.
Real-valued curvelets or shearlets are not associatedanitingle but with a ray,
i.e., 6 and 6 + T need to be identified. This is not reflected in the above defini-
tion. The ‘correct’ definition should assume théy| < J € P, the projective line.
Therefore, it should read

d (A, 1) = {6y — B} P+ Py —Xul*+ (8. X0 —xu)]

with {¢} being the projection of ontoP! = (—11/2, 11/2]. However, for our results
it will make no difference which definition is used. Thus wecided to employ
Definition 7, which avoids additional technicalities.

We point out that the Hart-Smith pseudo metric is not a ditan the strict
sense, e.g. we have(A,A) = 1+ 0. As we shall see later, it somehow measures the
correlation of a pair of parabolic molecules associatedhocbrresponding points
in IP. The following proposition, whose proof can be found in [&}llects some of
its properties.

Proposition 1 ([3]). For indicesA, u, v we have

(i) Symmetryw(A, () < w(u,A).
(i) Triangle Inequality: dA, ) < C(w(A,v)+ w(v,u)) for some constant G 0.
(iii) Composition: For every integer N- 0 and some positive constan@ holds

Y (A, v) Neo(v,u) ™ < Cnwd, )TN

4.3 Decay of the Cross-Gramian

Given two systems$m, ), 4 and(py)uea Of parabolic molecules we are interested
in the magnitudes of the cross-correlatigfsy , pu)|. A fast decay will be key
to, for instance, transferring sparse approximation prtigsefrom one system of
parabolic molecules to another.



18 P. Grohs, S. Keiper, G. Kutyniok, and M. Schafer

The following theorem establishes a relation to the indskadice orP. It states,
that a high distance of two indices can be interpreted as atogs-correlation of
the associated molecules. The proof is quite technical andefer to [17] for the
details.

Theorem 6 ([17]).Let (M) )rca, (Pu)uea be two systems of parabolic molecules of
order (R,M, Ny, Nz) with

R> 2N, M>3Nf§f, N12N+Z, N, > 2N.

Then \
[ )| S @ (55605 X0), (Sus B Xy)) -

This result shows that the Gramian matrix between two systefrparabolic
molecules satisfies a strong off-diagonal decay propertyigin that sense very
close to a diagonal matrix. In Section 6 we will present sevienmediate appli-
cations of this result, most notably for the approximatisoperties of parabolic
molecules.

5 Examples of Parabolic Molecules

Before going deeper into the theory of parabolic molecutes farther exploring
their properties, we pause for a while and give some exanfipiekustration. This
will give evidence about the versatility of the concept. brtcular, we show that
both rotation-based and shear-based constructions fitmethe framework. It will
also be proven that earlier constructions, which also eynple ‘molecule’ concept,
can be viewed as subclasses of the more general parabokcutes.

5.1 Curvelet-Like Systems

We begin with the review of curvelet-like systems, i.e. doindtions based on rota-
tion. Due to their similar construction principles, it magtrtome as a surprise that
second generation curvelets are instances of parabolieaulels. It is also easily

verified that curvelet molecules as defined in [3] fall ints thhamework.

5.1.1 Second Generation Curvelets

We start by specifying the parametrization, which we uiliar fitting second gen-
eration curvelets into the framework of parabolic molesule

Definition 8. Let
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N0 {(j,e,k) €z4: j>0,0=_2li/2-1 ,2U/2J-l},
be the curvelet index from (2) and defig® : A° — P by
®°(j,0,k) := (j, 27 VI mR_g A K).
Then(A°, @°) is called thecanonical parametrization

We next prove that the framg® of second generation curvelets as defined in
Subsection 3.1 forms a system of parabolic molecules ofrarigiorder.

Proposition 2 ([17]). The second generation curvelet fram@constitutes a system
of parabolic molecules of arbitrary order associated witle tanonical parametriza-
tion.

Proof. Let A € AC. Due to rotation invariance, we may restrict ourselves ¢octise
8, = 0. Therefore, denoting := y;; o0) it is sufficient to prove that the function

a()‘>(> — 2_331\/4%- (AS_Al)
satisfies (5) fo(R,M, N1, Ny) arbitrary. For this, first note that
ah() =229/ (A, ).

The functiorat), together with all its derivatives has compact support ieciangle
away from theé;-axis. Therefore, it only remains to show that, on its suppgbe
functiona®) has bounded derivatives, with a bound independeijt Biit this fol-
lows from elementary arguments, using- \/Ef+ 522, w = arctan&,/&1), which
yields

aM(&) = V00 (A§) =W (a;(§)V (B;(§)),

a(&):=271/221E2 +2iE% and Bj(&):= 2j/2arctan(2j%51) :

By a straightforward calculation, all derivatives @f and 3; are bounded on the
support ofat?) and uniformly inj. The proposition is proved. 0

5.1.2 Hart Smith’s Parabolic Frame

Historically, the first instance of a decomposition intoadaslic molecules can be
found in Hart Smith’s work on Fourier Integral Operators &valve Equations [29].
This frame, as well as its dual, again forms a system of péiaimolecules of arbi-
trary order associated with the canonical parametrizathmrefer to [29, 1] for the
details of the construction which is essentially identtoghe curvelet construction,
with primal and dual frame being allowed to differ. The sansedssion as above
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for curvelets shows that also this system is a special instahthe framework of
parabolic molecules.

5.1.3 Borup and Nielsen’s Construction

Another very similar construction has been given in [2]. histpaper, the focus
has been on the study of associated function spaces. Agarstiaightforward to
prove that this system constitutes a system of paraboliecutgs of arbitrary order
associated with the canonical parametrization.

5.1.4 Curvelet Molecules

The final concept of parabolic molecules had many predecesko[3] the au-
thors also employed the idea of molecules and introducechdtien of curvelet
moleculeslt proved to be a useful concept for showing sparsity priogeof wave
propagators. Let us first give their exact definition.

Definition 9. Let A® be the canonical parametrization. A familyy ), .o is called
afamily of curvelet molecules regularityR, if it can be written as

my (x) = 2%9/%a %) (A, Rg, (x—x3))
such that, for al|3| < Rand eactN=0,1,2,...,
0PN (x)| < (™

and, forallM =0,1,2,...,

M
AV Smin (1,279 + |8 +279/28))

This definition is similar to our definition of parabolic moldes, however with
two crucial differences: First, (5) allows for arbitrarytation angles and is therefore
more general. Curvelet molecules on the other hand are efilyad! for the canon-
ical parametrizatior © (which, in contrast to our definition, is not sufficiently gen
eral to also cover shearlet-type systems). Second, they decalitions analogous
to our condition (5) are more restrictive in the sense thagquires infinitely many
nearly vanishing moments.

In fact, the following result can be proven using similarwargents as for Propo-
sition 2.

Proposition 3 ([17]). A system of curvelet molecules of regularity R constitutes a
system of parabolic molecules of order,,R/2,R/2).
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5.2 Shearlet-Like Systems

It is perhaps not surprising that curvelets and their nedstidescribed above fall
into the framework of parabolic molecules. However, we walkt show that even
shearlets as a very different directional representatistesn are examples of
parabolic molecules. In this regard we would like to draw thader’s attention
to the parametrization chosen for fitting shearlets inte ttamework.

5.2.1 Shearlet Molecules

Shearlet molecules as introduced in [17] provide a fram&varshearlet-like sys-
tems in the spirit of curvelet molecules. For their definitiwe require the index
set

AO = {(e,j,l,k) €ZyxZ4 ec{0,1}, >0, (=—20/2 ... ,2U/2J} (6)

and generating functiong y;  k, j cx € L2(R?) for (j,¢,k) € A°. The associated
shearlet system
S:={0y:A €N},

is then defined by setting; o (-) = @(- —k) and forj > 1:
0010k () = 2V 0k (AS, - k).
0. () = 224 1 ('K‘J’SKT,J' '*k) :

HereS ; denotes the shearing matrix

_ 1 ¢2-1i/2]
S“':(o 1 )

We proceed to define shearlet molecules of of@M,N;,Ny), which is a gen-
eralization of shearlets adapted to parabolic molecuteparticular including the
classical shearlet molecules introduced in [21], see Suiose5.2.5.

Definition 10. We call X a system oShearlet moleculesf order(R,M, Ny, Np), if
the functiongy; /i satisfy

080y k(6 &) < min (127 118+ 27128]) " (€) ME) e @)
and .
0P G0, &2)| S (€)™ (&)~ ®)

for everyB € N? with |3| < R, and if the functionsp;  « satisfy (7) with the roles
of &1 andé, reversed.
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Remark 41In our proofs it is nowhere required that the directionabpaeter’ runs
between—2l1/2) and—2li/2 Indeed/ running in any discrete intervatC2Li/2,
..., C2li/2 would yield the exact same results, as a careful inspecfionioargu-
ments shows. Likewise, in certain shearlet constructitvestranslational sampling
runs not througtk € Z2, but throughrZ? with T > 0 a sampling constant. Our re-
sults are also valid for this case with similar proofs. Thesaemark applies to all
curvelet-type constructions.

Now we can show the main result of this section, namely thaaght systems
with generators satisfying (7) and (8) are actually instsnaf parabolic molecules
associated with a specific shearlet-adapted parametnizedi©, @9). This result
shows that the concept of parabolic molecules is indeedfecation of in particular
curvelet and shearlet systems.

Proposition 4 ([17]). Assume that the shearlet systémconstitutes a system of
shearlet molecules of ordgiR,M,N;,N;). ThenX forms a system of parabolic
molecules of order(R,M,Nz,N,), associated to the parametrizatidm?, ®°),
where with 8= Aj, A=A}, &, =5, §, = §; the map®? is given by

®7(A) = (51,60 %) = <j7eﬂ/2+ arotarf (27112, (s5,) (AT)_l"> :

Proof. We confine the discussion o= 0, the other case being the same. Further,
we will suppress the subscripis/, k in our notation. We need to show that

at () =y (ASA S5 RE, As, )

satisfies (5).
We first observe that the Fourier transformad¥) is given by

aM (=g (A_S)\ SZ_;;\ R-g)\ASA ) ,

and the matrb§, | R}, has the form

S TR _ (0%6) sin(6) ) _.(uV
Loy 6y 0 —(271%/2sin(6y) +cog6y) ) " \Oow)"

We next claim that the quantitiesandw are uniformly bounded from above and
below, independent gf, /. To prove this claim, consider the functions

7(x) := coqarctarix)) and p(x):= xsin(arctar{x)) + cogarctarfx)),

which are bounded from above and below/ed, 1], as elementary arguments show.
In fact, this boundedness holds on any compact interval. &Ve h

u=Tt (—EZLSA/ZJ) and w=p (—KZLSA/ZJ) .
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Since we are only considering indices with= 0, we have —(2/%/2/| < 1, which
now implies uniform upper and lower boundedness of the diesti, w. Hence,
there exist constantsQ ¢, < Ay < « and 0< §y < Ay < o such that for allj, £ it
holds

d<u<4, and gy <w< Ay,

Observing that the matri&_g, REA SjSTA As, has the form

u2 /2y
0 w ’

and by using the upper boundednessiafw and the chain rule, for an3| <R,

we obtain
-5, /2
(GFRDISCEEo

For the last estimate we utilized the moment estimateffowhich is given by (7).
This proves the moment property required in (5).

Finally, we need to show the decaya@fal?) for large frequencie&. Again, due
to the fact thati, v,w are bounded from above andw from below, and utilizing the
large frequency decay estimate in (7), we can estimate

e ((6*™)e)
(37 ) ™

S (g (&) .

The statement is proven. O

|0Pa™ (&)| < sup
lyl<R

In the remainder of this section we examine the main sheadestructions
which are known today and show that they indeed fit into theé&waork of parabolic
molecules.

5.2.2 Classical Shearlets

For the band-limited shearlet systetndefined in Subsection 3.2.1, the following
results can be shown using Proposition 4.

Proposition 5 ([17]). The systen® := 3% U > U @ constitutes a shearlet frame
which is a system of parabolic molecules of arbitrary order.

It is also straightforward to check that the related Paldeame constructed in
[22] constitutes a system of parabolic molecules of arbjtoader.
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5.2.3 Bandlimited Shearlets with Nice Duals

The bandlimited shearlet fran® as described above suffers from the fact that its
dual frames are unknown. In particular, it is not known wieetin general, there
exists a dual frame which also forms a system of parabolieoudés. In particular
for applications, such a construction is however requiFed.general frame& of
parabolic molecules it can be shown that the canonical daaldZ’ constitutes a
system of parabolic molecules of lower order [16]. Howetre,result of that paper
is mostly of a qualitative nature and in particular it is ditfit to compute the order
of the dual frame for a given construction. In [15] this pril was successfully
resolved by carefully glueing together the two bandlimitiesmes associated with
the two frequency cones. The result in this paper in factipies/a construction of
shearlet frame& with a dual frameX’ such that bott® andZ’ form systems of
parabolic molecules of arbitrary order.

5.2.4 Compactly Supported Shearlets

Again by using the general result Proposition 4, it can bevshihiat the compactly
supported shearlets as introduced in Subsection 3.2.3calsstitute a system of
parabolic molecules, this time with the order being depah@dea more delicate
way on the chosen generators.

Proposition 6 ([17]). Assume thatj;, € CM is a compactly supported wavelet with
M -+ R vanishing moments, angh € CNM*™2 is also compactly supported. Then,
with ¢ and @ defined by (4), the associated shearlet systeoonstitutes a system
of parabolic molecules of ordéR M, Nz, Ny).

We remark that several assumptions on the genergtots could be weakened,
for instance the separability of the shearlet generaton®iscrucial for the argu-
ments of the associated proof. More precisely, neither @minpupport nor ban-
dlimitedness is necessary.

5.2.5 Shearlet Molecules of [21]

In [21] the results of [3] are established for shearletssiadtof curvelets. A crucial
tool in the proof is the introduction of a certain type of sthetamolecules which are
similar to curvelet molecules discussed above, but tailtwehe shearing operation
rather than rotations.

Definition 11. Let A? be the shearlet index set as in (6) ad Sjj be defined
as in Proposition 4. A familym, ), a0 is called afamily of shearlet moleculesf
regularityR, if it can be written as

my (x) = 232 /4g%) (A?SZJ-X— k) :
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such that, for al|3| < Rand eaciN =0,1,2,.. .,
0PN (x| < ()~

and, forallM =0,1,2,...,

M
AN (E) s min (1,279 +]& +279/25])

By the results in [21], the shearlet molecules defined thesaiisfy the inequality
(7) with the choice of parametef® N,Ni,Np) = (00,00, R/2,R/2). Therefore, in
view of Proposition 4, shearlet molecules of regulaftas defined in [21] form
systems of parabolic molecules of order,c0, R/2,R/2).

Proposition 7 ([17]). A system of shearlet molecules of regularity R constitutes a
system of parabolic molecules of ordes, 0, R/2,R/2).

6 Sparse Approximation with Parabolic Molecules

This section is devoted to one prominent application of taenEwork of parabolic
molecules, and, in particular, the result of the decay ottlhes-Gramian (Theorem
6), namely to sparse approximation behavior. This resultalso show that the
viewpoint of time-frequency localization as adopted byfitaenework of parabolic
molecules provides the right angle to view questions of apipration behavior.

After introducing a measure for determining similar spgrbehavior, two main
results will be presented: First, it will be shown that anptsystems of parabolic
molecules, which are consistent in a certain sense madseiater, of sufficiently
high order exhibit the same approximation behavior. Secbgdinking an arbi-
trary system to the curvelet frame, we obtain a ‘stand-atesalt’ in the sense of
sufficient conditions on the order of a system of parabolitetges for providing
(almost) optimally sparse approximations of cartoon-fikections.

6.1 Sparsity Equivalence

In light of Lemma 1, two frames should possess similar spapggoximation be-
havior, provided that the corresponding coefficient segasrave the same spar-
sity. This gave rise to the notion of sparsity equivalenoeff17], which is a useful
tool to compare such behavior. It is based on the close cdondmetween the best
N-term approximation rate of a frame and thg(quasi-)norm of the associated
coefficient sequence.

Definition 12. Let (my ), 4 and(py)uea be systems of parabolic molecules and let
0< p< 1. Then(my)rea and(py)uea aresparsity equivalent irp, if
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< 00,

H (<m)\ ’ p“)))\e/\’“eA ’ép_)ép

Intuitively, systems of parabolic molecules being in theneasparsity equiva-
lence class have similar approximation properties. Thissubsequently be elabo-
rated more deeply.

6.2 Consistency of Parametrizations

The next goal will be to find conditions which ensure that twstems of parabolic
molecules are sparsity equivalent. It seems clear fromtaitiire viewpoint that this
requires some ‘consistency’ of the associated paramstniza The next definition
provides the correct notion for making this mathematicpiigcise.

Definition 13. Two parametrization$/\, @, ) and (A, @) are calledk-consistent
fork> 0, if

sup § WA, p) <o and supy w(A,p) K<,
AeA ien HEA XEN

In combination with Theorem 6, consistency is the essemtial to decide
whether two frames of parabolic molecules are sparsityvadpnt. We emphasize
that although the original definition of systems of paraboiblecules does not re-
quire those system to form a frame, in the context of appration theory, however,
the frame property becomes important.

The following result states a sufficient condition for sjtgrequivalence.

Theorem 7 ([17]). Two frames(my )xca and (py)uea Of parabolic molecules of
order (R, M, Nz, N2) with k-consistent parametrizations for some K, are sparsity
equivalentindp, 0 < p <1, if

k 5

K K 3 K
R>25 M>3~-2 N>~42 and N>2%
p p 4 'Tp'a p

Proof. By Schur’s test, a well-known result from operator theorg, lvave

1/p
P p
‘ép_wpémax<supz (M, py) Py sup S [(my, py)| ) ,

HEA X EN AEN HEA

H (<m)\ ) pu>))\e/\,ueA

By Theorem 6, this implies that

1/p
H((mhp“»)\e/\,ueA ’Zp%p S max(sup > w(A, 1) sup > w()\,u)—k> :

HEA Y'en AEA [IEA
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But the term on the right hand side is finite, due to t#heonsistency of the
parametrization$/\, @, ) and(A, ®,). This proves thatmy )y and(py)uca are
sparsity equivalent ifip. a

Thus, as long as the parametrizations are consistent, #ngitypequivalence can
be controlled by the order of the molecules.

In the remainder, we fix the frame of second generation cetseP from Sec-
tion 3.1 as a reference frame. Recall that with respect tedhenical parametriza-
tion (A9, ®,0), this frame constitutes a system of parabolic moleculestifying
the following definition.

Definition 14. A parametrization/A, ®,) is calledk-admissiblefor k > 0, if it is
k-consistent with the canonical parametrizatig?, @,0).

Before stating our main results, it seems natural to ask eiehe curvelet and
shearlet parametrization akeadmissible. This is the content of the next two lem-
mata.

Lemma 3 ([17]). The canonical parametrizatiof\®, @,0) is k-admissible for all
k> 2.

Proof. Writing s;, = j’ in the definition ofw (1, A ), we need to prove that
- o —k
% Z 2Ki-1| (1+2m'”<H >d(u,)\)) < w. 9)
J€Z+ A eNTs) =j
By [3, Equation (A.2)], for anyy, we have
y @ 2%d(u, )2 S 22079, (10)
AeNVs, =]

Hence, for eack > 2, (9) can be estimated by

%z—kH—J’\ZZH—J’\ < o,
j=

which finishes the proof. O
Lemma 4 ([17]). The shearlet parametrizatio\ %, @) is k-admissible for k> 2.

Proof. The proof follows the same arguments as the proof of Lemma&
deriving the analogue to (10), i.e.,

(1+2qd(ﬂ7/\))_2 < 22-9+  for anyqgandu € A°, (11)

AeN9 sy =]

requires a bit more work.
Without loss of generality we assume ttéat = 0 andx, = 0. Also, we only
restrict ourselves to the case= 0, the other case being exactly the same. In the
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caseq > j, the term on the left hand side of (11) can be bounded by a umifo
constant.

Thus, it remains to deal with the > g. Now we use the fact that, whenever
|0 < 271/2, we have

jarctan(—c21/2)| 2 2" U/2] and |SA K 2 |A- K,

to estimate (11) by
g% <1+ 2 (‘er/ZJ ‘2+ ‘Z*U/Zsz‘er ‘2*J'k1—£2*U/2Jk22*U/2J D)z

This can be interpreted as a Riemann sum and is bounded (ugpttstant) by the
corresponding integral

dx dy q 5 -2
/Rzm Rm(lJrz(YerXzHXl*Xzym ,
compare [3, Equation (A.3)]. This integral is bounded®y 22(i-%9 as can be
seen by the substitution — 29, Xo — 292y, y — 292y, This yields (11), which
completes the proof. a

6.3 Sparse Approximations

The next theorem now states the central fact that any systearabolic molecules

of sufficiently high order, whose parametrizatiokiadmissible, is sparsity equiva-
lent to the second generation curvelet frame from Subse8tib. This theorem can
interpreted as a means to transfer sparse approximatiolls&®m one system of

parabolic molecules to another one, which is also key to Téra®.

Theorem 8 ([17]).Assume thad < p < 1, (A, ®,) is a k-admissible parametriza-
tion, and % = (y, Jaeno the tight frame of bandlimited curvelets. Further, as-
sume thai{m, ), e IS @ system of parabolic molecules associated witbf order
(R,M,N1,Np) such that

k 5

REZE, M>3——2> N>
p p

k k
4 p

3
- No>2—.
+47 2 = p

Then(my ), cx is sparsity equivalent i to I°.

Recall that it was shown by Donoho in [11] (cf. Theorem 1) ttuatder natural
conditions) the optimally achievable decay rate of the apipnation error for the
class&?(R?) is given by

|f—fnl3<N"2 asN — o.
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As discussed before, in [5, 20, 24] rotation-based as wedhasr-based systems
were constructed, which attain this rate up to a log-fa8orce these systems are
instances of parabolic molecules with consistent parapagions, their similar ap-
proximation behavior is no coincidence, as we will see inrteet result.

Theorem 9 ([17]).Assume thatm, ), <, is a system of parabolic molecules of or-
der (R,M, Nz, Ny) with respect to the parametrizatigr , @, ) such that

(i) (M )aen constitutes a frame ford(R?),
(i) (A, ®n) is k-admissible for every k 2,
(iil) it holds that

R> 6, M>9—i—31, N123+§:, N, > 6.

Then the framém, ), possesses an almost best N-term approximation rate of
order N~1¢, & > 0 arbitrary, for the cartoon image clas§?(R?).

We remark that condition (ii) holds in particular for the aHet parametrization.
Hence this result allows a simple derivation of the resultf2D, 24] from [5]. In
fact, Theorem 9 provides a systematic way to, in particplaye results on sparse
approximation of cartoon-like functions. It moreover elesbus to provide a very
general class of systems of parabolic molecules which @yrsparsely approxi-
mate cartoon-like functions by using the known result fawvelets.

7 Outlook and Further Generalizations

Finally, we discuss some possible extensions and directarfuture research.

e Higher Dimensional Settingh general framework such as parabolic molecules
would also be of benefit for higher dimensional functionspanticular for the
3-dimensional setting which then includes videos with tasehird dimension.
The model of cartoon-like functions was already extendethi® situation in
[26]. Then, in [12], a general framework of parabolic molesufor functions
in L2(R3) was introduced allowing, in particular, a similar resulttbe cross-
Gramian of two systems of 3D parabolic molecules. We expetthe 3D frame-
work now indicates a natural extension to higher dimengisetéings.

e General Scaling MatrixAnother key question concerns the inclusion of other
types of scaling laws: Can the framework of parabolic mdiesbe extended to
also include, in particular, wavelets and ridgelets as aglhewer hybrid con-
structions such as [26] or [23]? In the parabolic molecudenfework the degree
of anisotropic scaling is confined to parabolic scaling,dng approach to cover
more scaling laws consists in the introduction of a paramete [0, 1], which
measures the degree of anisotropy. More precisely, onedbesiders scaling
matrices of the type didg,a“) for a € [0, 1], a = 0 corresponding to ridgelets,
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a= % to curvelets and shearlets, aad= 1 to wavelets. First results using this
approach to introduce an extension of parabolic molecudésed a-molecules
have been derived in [18].

Continuum Settindt would be highly desirable to also introduce such a frame-
work for the continuum setting, i.e., with continuous paeden sets, adapted to
the continuous shearlet and curvelet transform [6, 25, THis would, for in-
stance, allow the transfer of characterization results iefotocal smoothness
spaces between different representation systems.
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