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Wavelets and their associated transforms are highly ef�cie nt when approximating and analyzing one-
dimensional signals. However, multivariate signals such a s images or videos typically exhibit curvilinear
singularities, which wavelets are provably de�cient of spa rsely approximating and also of analyzing in the
sense of, for instance, detecting their direction. Shearle ts are a directional representation system extending
the wavelet framework, which overcomes those de�ciencies. Similar to wavelets, shearlets allow a faithful
implementation and fast associated transforms. In this pap er, we will introduce a comprehensive carefully
documented software package coined ShearLab 3D (www.Shear Lab.org) and discuss its algorithmic details.
This package provides MATLAB code for a novel faithful algor ithmic realization of the 2D and 3D shearlet
transform (and their inverses) associated with compactly s upported universal shearlet systems incorporat-
ing the option of using CUDA. We will present extensive numer ical experiments in 2D and 3D concern-
ing denoising, inpainting, and feature extraction, compar ing the performance of ShearLab 3D with similar
transform-based algorithms such as curvelets, contourlet s, or surfacelets. In the spirit of reproducible re-
seaerch, all scripts are accessible on www.ShearLab.org.
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1. INTRODUCTION

Wavelets have had a tremendous success in both theoretical a nd practical applications
such as, for instance, in optimal schemes for solving ellipt ic PDEs or in the compression
standard JPEG2000. A wavelet system is based on one or a few ge nerating functions to
which isotropic scaling operators and translation operato rs are applied to. One main
advantage of wavelets is their ability to deliver highly spa rse approximations of 1D
signals exhibiting singularities, which makes them a power ful maximally �exible tool
in being applicable to a variety of problems such as denoisin g or detection of singulari-
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ties. But similarly important for applications is the fact t hat wavelets admit a faithful
digitalization of the continuum domain systems with ef�cie nt algorithms for the asso-
ciated transform computing the respective wavelet coef�ci ents (cf. [Daubechies 1992;
Mallat 2008]).

However, each multivariate situation starting with the 2D s ituation differs signi�-
cantly from the 1D situation, since now not only (0-dimensio nal) point singularities,
but in addition typically also (1-dimensional) curvilinea r singularities appear; one can
think of edges in images or shock fronts in transport dominat ed equations. Unfortu-
nately, wavelets are de�cient to adequately handle such dat a, since they are them-
selves isotropic – in the sense of not directional based – due to their isotropic scaling
matrix. Thus, it was proven in [Cand �es and Donoho 2004] that wavelets do not provide
optimally sparse approximations of 2D functions governed b y curvilinear singulari-
ties in the sense of the decay rate of the L 2-error of best N -term approximation. This
causes problems for any application requiring sparse expan sions such as any imag-
ing methodology based on compressed sensing (cf. [Davenpor t et al. 2012]). Moreover,
being associated with just a scaling and a translation param eter, wavelets are, for in-
stance, also not capable of detecting the orientation of edg e-like structures.

1.1. Geometric Multiscale Analysis

These problems were the reason that within applied harmonic analysis the research
area of geometric multiscale analysis arose, whose main goa l consists in developing
representation systems which ef�ciently capture and spars ely approximate the geom-
etry of objects such as curvilinear singularities of 2D func tions. One approach pursued
was to introduce a 2D model situation coined cartoon-like functions consisting of func-
tions compactly supported on the unit square while being C2 except for a closed C2

discontinuity curve. A representation system was referred to as `optimally sparsely ap-
proximating cartoon-like functions' provided that it prov ided the optimally achievable
decay rate of the L 2-error of best N -term approximation.

A �rst breakthrough could be reported in 2004 when Cand �es and Donoho intro-
duced the system of curvelets, which could be proven to optimally sparsely approx-
imating cartoon-like functions while forming Parseval fra mes [Cand �es and Donoho
2004]. Moreover, this system showed a performance superior to wavelets in a variety
of applications (see, for instance, [Herrmann et al. 2008; S tarck et al. 2010]). How-
ever, curvelets suffer from the fact that in addition to a par abolic scaling operator and
translation operator, the rotation operator utilized as a m eans to change the orienta-
tion can not be faithfully digitalized; and the implementat ion could therefore not be
made consistent with the continuum domain theory [Cand �es et al. 2006]. This led to
the introduction of contourlets by Do and Vetterli [Do and Vetterli 2005], which can
be seen as a �lterbank approach to the curvelet transform. Ho wever, both of these
well-known approaches do not exhibit the same advantages wa velets have, namely a
uni�ed treatment of the continuum and digital situation, a s imple structure such as
certain operators applied to very few generating functions , and a theory for compactly
supported systems to guarantee high spatial localization.

1.2. Shearlets and Beyond

Shearlets were introduced in 2006 to provide a framework whi ch achieves these goals.
These systems are indeed generated by very few functions to w hich parabolic scaling
and translation operators as well as shearing operators to c hange the orientation are
applied [Kutyniok and Labate 2012]. The utilization of shea ring operators ensured –
due to consistency with the digital lattice – that the contin uum and digital realm was
treated uniformly in the sense of the continuum theory allow ing a faithful implemen-
tation (cf. for band-limited generators [Kutyniok et al. 20 12b]). A theory for compactly
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supported shearlet frames is available [Kittipoom et al. 20 12], showing that although
presumably Parseval frames can not be derived, still the fra me bounds are within a
numerically stable range. Moreover, compactly supported s hearlets can be shown to op-
timally sparsely approximating cartoon-like functions [K utyniok and Lim 2011]. Also,
to date a 3D theory is available [Kutyniok et al. 2012a].

Very recently, two extensions of shearlet theory were explo red. One �rst extension
is the theory of � -molecules [Grohs et al. 2013]. This approach extends the theory of
parabolic molecules introduced in [Grohs and Kutyniok 2014 ], which provides a frame-
work for systems based on parabolic scaling such as curvelet s and shearlets to analyze
their sparse approximation properties. � -molecules are a parameter-based framework
including systems based on different types of scaling such a s, in particular, wavelets
and shearlets, with the parameter � measuring the degree of anisotropy. As a sub-
family of this general framework so-called � -shearlets (also sometimes called hybrid
shearlets) were studied in [Kutyniok et al. 2012a] (cf. also [Keiper 20 12]), which can be
regarded as a parametrized family ranging from wavelets ( � = 2 ) to shearlets ( � = 1 ).
Again, the frame bounds can be controlled and optimal sparse approximation proper-
ties – now for a parametrized model situation – are proven, al so for compactly sup-
ported systems.

A further extension are universal shearlets , which allow a different type of scaling
(parabolic, etc.) at each scaling level of � -shearlets by setting � = ( � j ) j with j being
the scale, thereby achieving maximal �exibility [Genzel an d Kutyniok 2014]. This ap-
proach has so far been only analyzed for band-limited genera tors, deriving properties
on the sequence (� j ) j such that the resulting system forms a Parseval frame.

1.3. Contributions

Several implementations of shearlet transforms are availa ble to date, and we refer to
Subsections 2.3 and 5.2 for more details. Most of those focus on the (2D) band-limited
case. In this situation, a Parseval frame can be achieved pro viding immediate numer-
ical stability and a straightforward inverse transform. Ho wever, from an application
point of view, those approaches typically suffer from high c omplexity, various artifacts,
and insuf�cient spatial localization. The faithful algori thmic realization suggested in
[Lim 2010] by one of the authors was the �rst to focus on compac tly supported shear-
lets, achieving also low complexity by utilizing separable shearlet generators. Interest-
ingly, this approach could then be improved in [Lim 2013] by u tilizing non-separable
compactly supported shearlet generators. The key idea behi nd this seemingly unrea-
sonable approach is that the classical band-limited genera tors – whose Fourier trans-
forms have wedge-like support – leading to Parseval frames c an be much better ap-
proximated by non-separable compactly supported function s than by separable ones.

ShearLab 3D builds on the approach from [Lim 2013], and exten ds it in two ways,
namely to universal shearlets as well as to the 3D situation. In addition, elaborate
numerical experiments comparing ShearLab 3D with the curre nt state-of-the-art al-
gorithms in geometric multiscale analysis are provided, mo re precisely with the Non-
subsampled Shearlet Transform in 2D & 3D [Easley et al. 2008] , the Nonsubsampled
Contourlet Transform in 2D [da Cunha et al. 2006], the Fast Di screte Curvelet Trans-
form in 2D [Cand �es and Donoho 1999a], the Surfacelet Transform in 3D [Do and L u
2007], and �nally also with the classical Stationary Wavele t Transform in 2D. The al-
gorithms were tested with respect to denoising and inpainti ng in 2D and 3D as well
as separation in 2D (separation in 3D requires additional sy stems which renders a
comparison unfair). Each time carefully chosen performanc e measures were speci�ed
and served as an objective basis for the comparisons. It coul d be shown that indeed
ShearLab 3D outperforms the other algorithms in most tasks, also concerning speed.
It is interesting to note that with respect to video denoisin g ShearLab 3D as a univer-
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sally applicable tool is only marginally beaten by the speci �cally for this task designed
BM3D algorithm [Maggioni et al. 2012].

In the spirit of reproducible research [Donoho et al. 2009], ShearLab 3D as well as
the codes for all comparisons are freely accessible on www.S hearLab.org.

1.4. Outline

This paper is organized as follows. We �rst review the main de �nitions and results
from frame and shearlet theory in Section 2. Section 3 is then devoted to a detailed
discussion of the faithful algorithmic realization of the s hearlet transform (and its
inverse), which is implemented in ShearLab 3D. After a short review of the wavelet
transform in Subsection 3.1, the 2D (Subsection 3.2) and 3D ( Subsection 3.3) algo-
rithms are discussed, each time �rst in the parabolic and the n in the general situation,
and �nally in Subsection 3.4 the inverse transform is presen ted. The actual MATLAB
implementation in ShearLab 3D is described in Section 4. Fin ally, elaborate numeri-
cal experiments are presented (Section 5) ranging from deno ising to video inpainting
in Subsections 5.3 to 5.7 each time carefully comparing (Sub section 5.8) ShearLab 3D
with the state-of-the-art algorithms described in Subsect ion 5.2.

2. DISCRETE SHEARLET SYSTEMS

In this section, we will state the main de�nitions and necess ary results about shearlet
systems for L 2(R2) and L 2(R3). We start though with a brief review of frame theory
which – with the notion of frames – provides a functional anal ytic concept to general-
ize the setting of orthonormal bases. In fact, shearlet syst ems do not form bases, but
require this extended concept.

2.1. Review: Frame Theory

Frame theory is nowadays used when redundant, yet stable exp ansions are required.
A sequence (' i ) i 2 I in a Hilbert space H is called frame for H , if there exist constants
0 < A � B < 1 such that

Akxk2 �
X

i 2 I

jhx; ' i ij 2 � B kxk2 for all x 2 H :

If A = B is possible, the frame is referred to as tight , in case A = B = 1 as a Parseval
frame. One application of frames is the analysis of elements in a Hi lbert space, which
is achieved by the analysis operator given by

T : H ! `2(I ); T (x) = ( hx; ' i i ) i 2 I :

Reconstruction of each element x 2 H from T x is possible by the frame reconstruction
formula given by

x =
X

i 2 I

hx; ' i i S� 1' i ; (1)

where Sx =
P

i 2 I hx; ' i i ' i is the frame operator associated with the frame (' i ) i 2 I . We
remark that for tight frames, the frame operator is just a mul tiple of the identify, hence
easily invertible. For general frames, it might be dif�cult to use (1) in practise, since
inverting S might be numerically unfeasible, in particular if B=A is large. In those
cases, the so-called frame algorithm , for instance, described in [Christensen 2003], can
be applied. Moreover, in [Gr öchenig 1993], the Chebyshev method and the conjugate
gradient methods were introduced, which are signi�cantly better adapted to f rame
theory leading to faster convergence than the frame algorit hm.
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2.2. Universal Shearlet Systems

We next introduce 2D and 3D universal shearlet systems, each time �rst discussing
the parabolic case and then extending it to the general case. For more information, we
refer to [Kutyniok and Labate 2012] and [Genzel and Kutyniok 2014].

2.2.1. 2D Situation. Shearlet systems can be regarded as consisting of certain ge ner-
ating functions whose resolution is changed by a parabolic s caling matrix A2j or ~A2j

de�ned by

A2j =
�

2j 0
0 2j= 2

�
and ~A2j =

�
2j= 2 0

0 2j

�
;

whose orientation is changed by a shearing matrix Sk or ST
k de�ned by

Sk =
�

1 k
0 1

�
;

and whose position is changed by translation. More precisel y. a shearlet system – some-
times in this form also referred to as cone-adapted due to the fact that it is adapted to
a cone-like partition in frequency domain (cf. Figure 1) – is de�ned as follows.

De�nition 2.1. For �;  ; ~ 2 L 2(R2) and c = ( c1; c2) 2 (R+ )2, the shearlet system
SH (�;  ; ~ ; c) is de�ned by

SH (�;  ; ~ ; c) = �( � ; c1) [ 	(  ; c) [ ~	( ~ ; c);

where

�( � ; c1) = f � m = � ( � � c1m) : m 2 Z2g;

	(  ; c) = f  j;k;m = 2
3
4 j  (Sk A2j � � M cm) : j � 0; jkj � d 2j= 2e; m 2 Z2g;

~	( ~ ; c) = f ~ j;k;m = 2
3
4 j ~ (ST

k
~A2j � � ~M cm) : j � 0; jkj � d 2j= 2e; m 2 Z2g;

with

M c =
�

c1 0
0 c2

�
and ~M c =

�
c2 0
0 c1

�
:

Its associated transform maps functions to the sequence of s hearlet coef�cients,
hence is merely the associated analysis operator.

De�nition 2.2. Set � = N0 � f�d 2j= 2e; : : : ; d2j= 2eg � Z2: Further, let SH (�;  ; ~ ; c)
be a shearlet system and retain the notions from De�nition 2. 1. Then the associated
shearlet transform of f 2 L 2(R2) is the mapping de�ned by

f ! SH �; ; ~ f (m0; (j; k; m ); (~j; ~k; ~m)) = ( hf; � m 0i ; hf;  j;k;m i ; hf; ~ ~j; ~k; ~m i );

where

(m0; (j; k; m ); (~j; ~k; ~m)) 2 Z2 � � � � :

A (historically) �rst class of generators are so-called cla ssical shearlets, which are
de�ned as follows. Let  2 L 2(R2) be de�ned by

 ̂ (� ) =  ̂ (� 1; � 2) =  ̂ 1(� 1)  ̂ 2( � 2
� 1

); (2)

where  1 2 L 2(R) is a discrete wavelet in the sense that it satis�es the discre te
Calder ón condition, given by

X

j 2 Z

j  ̂ 1(2� j � )j2 = 1 for a.e. � 2 R;
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with  ̂ 1 2 C1 (R) and supp ̂ 1 � [� 1
2 ; � 1

16 ] [ [ 1
16 ; 1

2 ], and  2 2 L 2(R) is a bump function
in the sense that

1X

k= � 1

j  ̂ 2(� + k)j2 = 1 for a.e. � 2 [� 1; 1];

satisfying  ̂ 2 2 C1 (R) and supp ̂ 2 � [� 1; 1]. Then  is called a classical shearlet . With
small modi�cations of the boundary elements, classical she arlets lead to a Parseval
frame for L 2(R2) [Guo et al. 2006]. The induced tiling of the frequency plane i s illus-
trated in Figure 1.

Fig. 1. Tiling of the frequency plane induced by the Parseval frame of classical shearlets.

Some years later, compactly supported shearlets have been s tudied. It was shown
that a large class of compactly supported generators yield s hearlet frames with control-
lable frame bounds [Kittipoom et al. 2012]. One for numerica l algorithms particularly
interesting special case are separable generators given by  =  1 
 � 1, which generate
shearlet frames provided that the 1D wavelet function  1 and the 1D scaling function
� 1 are suf�ciently smooth and  1 has suf�cient vanishing moments.

Let us now turn to the more �exible universal shearlets, whic h were introduced
in [Genzel and Kutyniok 2014]. Their de�nition requires an e xtension of the scaling
matrix to insert a parameter � 2 (0; 2) measuring the degree of anisotropy. For this, let
A �; 2j and ~A �; 2j be de�ned by

A �; 2j =
�

2j 0
0 2�j= 2

�
and ~A2j =

�
2�j= 2 0

0 2j

�
;

A universal shearlet system can then be de�ned as follows.

De�nition 2.3. For �;  ; ~ 2 L 2(R2), � = ( � j ) j , � j 2 (0; 2) for each scale j , and
c = ( c1; c2) 2 (R+ )2, the universal shearlet system SH (�;  ; ~ ; �; c ) is de�ned by

SH (�;  ; ~ ; �; c ) = �( � ; c1) [ 	(  ; �; c ) [ ~	( ~ ; �; c );

where

�( � ; c1) = f � m = � ( � � c1m) : m 2 Z2g;

	(  ; �; c ) = f  j;k;m = 2
� j +1

4 j  (Sk A � j ;2j � � M cm) : j � 0; jkj � d 2j ( � j � 1)=2e; m 2 Z2g;

~	( ~ ; �; c ) = f ~ j;k;m = 2
� j +1

4 j ~ (ST
k

~A � j ;2j � � ~M cm) : j � 0; jkj � d 2j ( � j � 1)=2e; m 2 Z2g:
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Let us now brie�y discuss the situation when all � j coincide, i.e., � 0 := � j for all
scale j . In this case, SH (�;  ; ~ ; �; c ) = SH (�;  ; ~ ; c) if � 0 = 1 . Moreover, if � 0 = 2 for
any scale j , then SH (�;  ; ~ ; �; c ) becomes an isotropic wavelet system. It should be
also mentioned that for � 0 ! 0, the associated universal shearlet system approaches
the system of ridgelets [Cand �es and Donoho 1999b].

The associated transform is then de�ned similarly as in the p arabolic situation.

De�nition 2.4. Set � = N0 � f�d 2j ( � j � 1)=2e; : : : ; d2j ( � j � 1)=2eg � Z2: Further, let
SH (�;  ; ~ ; �; c ) be a shearlet system and retain the notions from De�nition 2. 3. Then
the associated universal shearlet transform of f 2 L 2(R2) is the mapping de�ned by

f ! SH �; ; ~ f (m0; (j; k; m ); (~j; ~k; ~m)) = ( hf; � m 0i ; hf;  j;k;m i ; hf; ~ ~j ;~k; ~m i );

where
(m0; (j; k; m ); (~j; ~k; ~m)) 2 Z2 � � � � :

In [Genzel and Kutyniok 2014] it was shown that there exists a n abundance of scal-
ing sequences � = ( � j ) j such that with a small modi�cation of classical shearlets th e
system SH (�;  ; ~ ; �; c ) yields a Parseval frame for L 2(R2).

2.2.2. 3D Situation. Turning now to the 3D situation and starting again with the
parabolic case, it is apparent that the 2D parabolic scaling matrix A2j can be ex-
tended either by diag (2j ; 2j= 2; 2j ) or diag (2j ; 2j= 2; 2j= 2). The �rst case however gener-
ates `needle-like shearlets' for which a frame property see ms highly unlikely. Hence
the second case is typically considered.

For the sake of brevity, we next immediately present the gene ral case of 3D universal
shearlets. Then, for � 2 (0; 2), we set

A �; 2j =

0

@
2j 0 0
0 2�j= 2 0
0 0 2�j= 2

1

A; ~A �; 2j =

0

@
2�j= 2 0 0

0 2j 0
0 0 2�j= 2

1

A; and �A �; 2j =

0

@
2�j= 2 0 0

0 2�j= 2 0
0 0 2j

1

A :

The shearing matrices are now associated with a parameter k = ( k1; k2) 2 Z2 and
de�ned by

Sk =

 
1 k1 k2
0 1 0
0 0 1

!

; ~Sk =

 
1 0 0
k1 1 k2
0 0 1

!

; and �Sk =

 
1 0 0
0 1 0
k1 k2 1

!

:

Finally, for c1; c2 2 R+ , translation will be given by M c = diag(c1; c2; c2), ~M c =
diag(c2; c1; c2), and �M c = diag(c2; c2; c1). With these notions, a 3D universal shearlet
system can then be de�ned as follows.

De�nition 2.5. For �;  ; ~ ; � 2 L 2(R2), � = ( � j ) j , � j 2 (0; 2) for each scale j , and
c = ( c1; c2) 2 (R+ )2, the universal shearlet system SH (�;  ; ~ ; � ; �; c ) is de�ned by

SH (�;  ; ~ ; � ; �; c ) = �( � ; c1) [ 	(  ; �; c ) [ ~	( ~ ; �; c ) [ �	( � ; �; c );

where

�( � ; c1) = f � m = � ( � � c1m) : m 2 Z2g;

	(  ; �; c ) = f  j;k;m = 2
� j +1

4 j  (Sk A � j ;2j � � M cm) : j � 0; jkj � d 2j ( � j � 1)=2e; m 2 Z2g;

~	( ~ ; �; c ) = f ~ j;k;m = 2
� j +1

4 j ~ (ST
k

~A � j ;2j � � ~M cm) : j � 0; jkj � d 2j ( � j � 1)=2e; m 2 Z2g;

�	( � ; �; c ) = f � j;k;m = 2
� j +1

4 j � (ST
k

�A � j ;2j � � �M cm) : j � 0; jkj � d 2j ( � j � 1)=2e; m 2 Z2g:
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The associated transform is then de�ned as follows.

De�nition 2.6. Set � = N0 � f�d 2j ( � j � 1)=2e; : : : ; d2j ( � j � 1)=2eg2 � Z3: Further, let
SH (�;  ; ~ ; � ; �; c ) be a shearlet system and retain the notions from De�nition 2. 5.
Then the associated universal shearlet transform of f 2 L 2(R2) is the mapping, which
maps f to

SH �; ; ~ ; � f (m0; (j; k; m ); (~j; ~k; ~m); (�j; �k; �m)) = ( hf; � m 0i ; hf;  j;k;m i ; hf; ~ ~j ;~k; ~m i ; hf; � �j ; �k; �m i );

where

(m0; (j; k; m ); (~j; ~k; ~m); (�j; �k; �m)) 2 Z3 � � � � � � :

In the situation of parabolic scaling it was shown in [Kutyni ok et al. 2012a] that a
large class of compactly supported generators yields shear let frames with controllable
frame bounds. This is in particular the case for separable ge nerators  =  1 
 � 1 
 ~� 1

for which  1 is a 1D wavelets with suf�ciently many vanishing moments and � 1; ~� 1
are suf�ciently smooth 1D scaling functions. Still in the pa rabolic case, the situation
of band-limited (classical) 3D shearlets was studied in [Gu o and Labate 2012], which
– similar to the 2D situation – form a Parseval frame for L 2(R3) with a small modi�ca-
tion of the elements near the seam lines. An illustration of h ow 3D shearlets tile the
frequency domain is provided in Figure 2.

Fig. 2. Tiling of the frequency domain induced by 3D shearlets.

2.3. Previous Implementations

We now brie�y review previous implementations of the shearl et transform. It should
be emphasized though that all implementations so far only fo cussed on the parabolic
case, i.e., � j = 1 for all scales j .

2.3.1. Fourier Domain Approaches. Band-limited shearlet systems provide a precise par-
tition of the frequency plane due to the fact that the Fourier transforms of all elements
are compactly supported and that they form a tight frame. Hen ce it seems most appro-
priate to implement the associated transforms via a Fourier domain approach , which
aims to directly produce the same frequency tiling.

A �rst numerical implementation using this approach was dis cussed in [Easley et al.
2008] as a cascade of a subband decomposition based on the Lap lacian Pyramid �lter,
which was then followed by a step containing directional �lt ering using the Pseudo-
Polar Discrete Fourier Transform. Another approach was sug gested in [Kutyniok et al.
2012b]. The main idea here is to employ a carefully weighted P seudo-Polar transform
with weights ensuring (almost) isometry. This step is then f ollowed by appropriate
windowing and the inverse FFT applied to each windowed part.
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2.3.2. Spatial Domain Approaches. We refer to a numerical realization of a shearlet
transform as a spatial domain approach if the �lters associated with the transform
are implemented by a convolution in the spatial domain. Wher eas Fourier-based ap-
proaches were only utilized for band-limited shearlet tran sforms, the range of spatial
domain-based approaches is much broader and basically just i�able for a transform
based on any shearlet system. We now present the main contrib utions.

In the paper [Easley et al. 2008] already referred to in Subse ction 2.3.1, also a spatial
domain approach is discussed. This implementation utilize s directional �lters, which
are obtained as approximations of the inverse Fourier trans forms of digitized band-
limited window functions. A numerical realization speci�c ally focussed on separable
shearlet generators  sep given by  sep =  1 
 � 1 – which includes certain compactly
supported shearlet frames (cf. Subsection 2.2) – was derive d in [Lim 2010]. This al-
gorithm enables the application of fast transforms separab ly along both axes, even if
the corresponding shearlet transform is not associated wit h a tight frame. The most
faithful, ef�cient, and numerically stable (in the sense of closeness to tightness) digital-
ization of the shearlet transform was derived in [Lim 2013] b y utilizing non-separable
compactly supported shearlet generators, which best appro ximate the classical band-
limited generators. In fact, the implementation of the univ ersal shearlet transform we
will discuss in this paper will be based on this work.

There exist two other approaches, which though have not been numerically tested
yet. The one introduced in [Kutyniok and Sauer 2009] explore s the theory of subdivi-
sion schemes inserting directionality, and leads to a versi on of the shearlet transform
which admits an associated multiresolution analysis struc ture. In close relation to this
algorithmic realization, in [Han et al. 2011] a general unit ary extension principle is
proven, which – for the shearlet setting – provides equivale nt conditions for the �lters
to lead to a shearlet frame.

3. DIGITAL SHEARLET TRANSFORM

In this section, we will introduce and discuss the algorithm s which are implemented
in ShearLab 3D. We will start with a brief review of the digita l wavelet transform in
Subsection 3.1, which parts of the digital shearlet transfo rm will be based upon. In
Subsection 3.2 the 2D forward shearlet transform will be dis cussed, �rst the parabolic
version, followed by a general version with freely chosen � . The 3D version is then
presented in Subsection 3.3. Finally, the inverse shearlet transform both for 2D and
3D is detailed in Subsection 3.4.

3.1. Digital Wavelet Transform

We start by recalling the notion of the discrete Fourier tran sform of a sequence
f a(n)gn 2 Zd 2 `2(Zd), which is de�ned by

â(� ) =
X

n 2 Zd

a(n)e� 2�in � � :

In the sequel, we will also use the notion a(n) = a(� n) for n 2 Zd. We further wish
to refer the reader not familiar with wavelets to the books [D aubechies 1992; Mallat
2008].

Let now  1 and � 1 2 L 2(R) be a wavelet and an associated scaling function, respec-
tively, satisfying the two scale relations

� 1(x1) =
X

n 1 2 Z

h(n1)
p

2� 1(2x1 � n1) (3)
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and

 1(x1) =
X

n 1 2 Z

g(n1)
p

2� 1(2x1 � n1): (4)

Then, for each j > 0 and n1 2 Z, the associated wavelet function  1
j;n 1

2 L 2(R) is
de�ned by

 1
j;n 1

(x1) = 2 j= 2 1(2j x1 � n1):

Now let f be a function on R, for which we assume an expansion of the type

f 1D(x1) =
X

n 1 2 Z

f 1D
J (n1)2J=2� 1(2J x1 � n1)

for a �xed, suf�ciently large J > 0. To derive a formula for the associated wavelet coef-
�cients, for each j > 0, let f hj (n1)gn 1 2 Z and f gj (n1)gn 1 2 Z denote the Fourier coef�cients
of the trigonometric polynomials

ĥj (� 1) =
j � 1Y

k=0

ĥ(2k � 1) and ĝj (� 1) = ĝ
� 2j � 1

2

�
ĥj � 1(� 1) (5)

with ĥ0 � 1. Then using (3) and (4) and setting wj � gJ � j as well as � 1(n1) =
h� 1( � ); � 1( � � n1)i , the wavelet coef�cients hf 1D ;  1

j;n 1
i can be computed by the discrete

formula given by

hf 1D ;  1
j;m 1

i = wj � (f 1D
J � � 1)(2J � j � m1):

In particular, when � 1 is an orthonormal scaling function, this expression reduce s to

hf 1D ;  1
j;m 1

i = ( wj � f 1D
J )(2J � j � m1): (6)

This last formula is the common 1D digital wavelet transform .
This transform can now be easily extended to the multivariat e case by using tensor

products. Similar to the 1D case, we consider a 2D function f given by

f (x) =
X

n 2 Z2

f J (n)2J � (2J x1 � n1; 2J x2 � n2); (7)

where � (x) = � 1 
 � 1(x). Assume that � 1 is an orthonormal scaling function. Then,
using (6), it is a straightforward calculation to show that t he 2D digital wavelet trans-
form , which computes wavelet coef�cients for f , is of the form

hf;  1
j;m 1


 � 1
j;m 1

i = ( gJ � j 
 hJ � j � f )(2J � j � m);

hf; � 1
j;m 1


  1
j;m 2

i = ( hJ � j 
 gJ � j � f )(2J � j � m);

and

hf;  1
j;m 1


  1
j;m 1

i = ( gJ � j 
 gJ � j � f )(2J � j � m):

3.2. 2D Shearlet Transform

We will now describe the algorithmic realization of the tran sform associated with a
universal compactly supported shearlet system SH (�;  ; ~ ; �; c ) (as introduced in Sub-
section 2.2) used in ShearLab 3D. We remark that the subset �( � ; c1) is merely the
scaling part coinciding with the wavelet scaling part. More over, it will be suf�cient to
consider shearlets from 	(  ; �; c ) as the same arguments apply to ~	( ~ ; �; c ) except for
switching the order of variables.
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We start with the digitalization of the universal shearlet t ransform for the parabolic
case, i.e., � j = 1 for all scales j , which was initially introduced in [Lim 2013]. We then
extend this algorithmic approach to the situation of a gener al parameter � = ( � j ) j ,
allowing � j to differ for each scale j .

3.2.1. The Parabolic Case. First, the shearlet generator  needs to be chosen. In Sub-
section 2.3.2, the choice of a separable shearlet generator  =  1 
 � 1 was discussed,
which generated a shearlet frame provided that the 1D wavele t function  1 and the 1D
scaling function � 1 are suf�ciently smooth and  1 has suf�cient vanishing moments.
However, signi�cantly improved numerical results can be ac hieved by choosing a non-
separable generator  such as

 ̂ (� ) = P(� 1=2; � 2) ̂ sep(� ); (8)

where the trigonometric polynomial P is a 2D fan �lter (cf. [Do and Vetterli 2005],
[da Cunha et al. 2006]). The reason for this is the fact, that n on-separability allows
the Fourier transform of  to have a wedge shaped essential support, thereby well ap-
proximating the Fourier transform of a classical shearlet. In particular, with a suitable
choice for a 2D fan �lter P, we have

P(� 1=2; � 2)�̂ 1(� 2) �  ̂ 2(
� 2

� 1
)

and

P(� 1=2; � 2) ̂ 1(� 1)�̂ 1(� 2) �  ̂ 1(� 1) ̂ 2(
� 2

� 1
)

where  ̂ 1(� 1) ̂ 2( � 2
� 1

) is the classical shearlet generator de�ned in (2). Compared with
separable compactly supported shearlet generators, this p roperty does indeed not
only improve the frame bounds of the associated system, but a lso improves the di-
rectional selectivity signi�cantly. Figure 3 shows some no n-separable compactly sup-
ported shearlet generators both in time and frequency domai n. One can in fact con-
struct compactly supported functions  1 and � 1, and a �nite 2D fan �lter P such that

inf fj  ̂ 1(� 1)j2 : 1=2 < j� 1 j < 1g > � 1; inf fj �̂ 1(� 1)j2 : � 1=2 < � 1 < 1=2g > � 2; (9)

and

inf fj P(� )j2 : 1=4 < j� 1 j < 1=2; j� 2=�1j < 1g > � 3 (10)

with some � 1; � 2 and � 3 > 0. This implies

j�̂ (� )j2 +
X

j � 0

X

j k j�d 2j= 2 e

�
j ̂ j;k; 0(� )j2 + j ~̂ j;k; 0(� )j2

�
> min( � 2

2 ; � 1� 2� 3)

with � = � 1 
 � 1 and ~ (x1; x2) =  (x2; x1). This inequality provides a lower frame
bound provided that  1 and � 1 decay suf�ciently fast in frequency and  1 has suf�cient
vanishing moments. One can also obtain an upper frame bound w ith  generated by
those 1D functions. We refer to [Kittipoom et al. 2012] for mo re details.

The task is now to derive a digital formulation for the comput ation of the associated
shearlet coef�cients hf;  j;k;m i for j = 0 ; : : : ; J � 1 of a function f given as in (7), where

 j;k;m (x) = 2
3
4 j  (Sk A2j x � M cj m)

with the sampling matrix given by M cj = diag(cj
1; cj

2). Without loss of generality, we
will from now on assume that j=2 is integer; otherwise bj=2c would need to be taken.
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(a) (b) (c) (d)
Fig. 3. Shearlets  j;k;m in the time/frequency domain. (a)–(b) : Shearlets in the spa tial domain. (c)–(d) :
Shearlets in the frequency domain.

We �rst observe that

Sk A2j = A2j Sk=2j= 2 ;

which implies that

 j;k;m ( � ) =  j; 0;m (Sk=2j= 2 � ) (11)

Thus, our strategy for discretizing  j;k;m consists of the following two parts:

(I) Faithful discretization of  j; 0;m using the structure of the multiresolution analysis
associated with (8).

(II) Faithful discretization of the shear operator Sk=2j= 2 .

We start with part (I), which will require the digital wavele t transform introduced
in Subsection 3.1. Without loss of generality, we assume M cj = Id . The general case
can be treated similarly. First, using (3), (4) and (8), we ob tain

 ̂ j; 0;m (� ) = 2 � 3
4 j e� 2�im � A � 1

2 j �  ̂ (A � 1
2j � )

= 2 � 3
4 j � 1e� 2�in � A � 1

2 j � P(A � 1
2j Q� 1� )ĝ(2� j � 1� 1)ĥ(2� j= 2� 1� 2)�̂ (A � 1

2j 2� 1� ); (12)

where Q = diag(2; 1). From now on, we assume that � is an orthonormal scaling func-
tion, i.e.,

X

n 2 Z2

j �̂ (� + n)j2 = 1 : (13)

Applying (3) and (4) iteratively, we obtain

�̂ (A � 1
2j 2� 1� ) = 2 � J + 3

4 j +1
J � j � 1Y

` =1

ĥ(2� j � 1� ` � 1)
J � j= 2� 1Y

` =1

ĥ(2� j= 2� 1� ` � 2)�̂ (2� J � ):

Inserted in (12), it follows that

 ̂ j; 0;m (� ) = 2 � J e� 2�im � A � 1
2 j � P(A � 1

2j Q� 1� )ĝJ � j 
 ĥJ � j= 2(2� J � )�̂ (2� J � ):

Assuming the function f to be of the form (7), hence its Fourier transform is

f̂ (� ) = 2 � J f̂ J (2� J � )�̂ (2� J � );

we conclude that

hf;  j; 0;m i

= 2 � 2J
Z

R2
f̂ J (2� J � )j�̂ (2� J � )j2e2�im � A � 1

2 j � P � (A � 1
2j Q� 1� )Ŵ �

j (2� J � )�̂ � (2� J � )d�

ACM Transactions on Mathematical Software, Vol. V, No. N, Ar ticle A, Publication date: January YYYY.



ShearLab 3D: Faithful Digital Shearlet Transforms based on Compactly Supported Shearlets A:13

where Wj = gJ � j 
 hJ � j= 2. Letting � = 2 � J � and using (13),

hf;  j; 0;m i =
Z

R2
f̂ J (� )j�̂ (� )j2e2�im � A � 1

2 j 2J � P � (2J A � 1
2j Q� 1� )Ŵ �

j (� )d�

=
Z

[0;1]2
f̂ J (� )

X

n 2 Z2

j �̂ (� + n)j2e2�im � A � 1
2 j 2J � P � (2J A � 1

2j Q� 1� )Ŵ �
j (� )d�

=
Z

[0;1]2
f̂ J (� )e2�im � A � 1

2 j 2J � P � (2J A � 1
2j Q� 1� )Ŵ �

j (� )d�:

Thus, letting pj (n) be the Fourier coef�cients of P(2J � j � 1� 1; 2J � j= 2� 2) with a 2D fan
�lter,

hf;  j; 0;m i = ( f J � (pj � Wj ))( A � 1
2j 2J m): (14)

We remark that in case pj � 1 this coincides with the 2D wavelet transform associated
with the anisotropic scaling matrix A2j and a separable wavelet generator, while we ob-
tain the anisotropic wavelet transform with a nonseparable wavelet generator in case
pj is a nonseparable �lter. Note that in case of M cj 6= Id , (14) can be easily extended to
obtain

hf;  j; 0;m i = ( f J � (pj � Wj ))( A � 1
2j 2J M cj m); (15)

for which the sampling matrix M cj should be chosen so that A � 1
2j 2J M cj m 2 Z2.

We next turn to part (II), i.e., to faithfully digitize the sh ear operator S2� j= 2 k , which
will then provide an algorithm for computing hf;  j;k;m i by using (11) combined with
(14). We however face the problem that in general, the shear m atrix S2� j= 2 k does not
preserve the regular grid Z2, i.e.,

S2� j= 2 k (Z2) 6= Z2:

One approach to resolve this problem is to re�ne the regular g rid Z2 along the horizon-
tal axis x1 by a factor of 2j= 2. With this modi�cation, the new grid 2� j= 2Z � Z is now
invariant under the shear operator S2� j= 2 k , since

2� j= 2Z � Z = Q� j= 2(Z2) = Q� j= 2(Sk (Z2)) = S2� j= 2 k (2� j= 2Z � Z):

Thus the operator S2� j= 2 k is indeed well de�ned on the re�ned grid 2� j= 2Z � Z, which
provides a natural discretization of S2� j= 2 k . This observation gives rise to the following
strategy for computing sampling values of f (Sk2� j= 2 � ) for given samples f J 2 `2(Z2)
from the function f 2 L 2(R2). For this, let " 2j= 2, # 2j= 2, and � 1 be the 1D upsam-
pling, downsampling, and convolution operator along the ho rizontal axis x1, respec-
tively. First, compute interpolated sample values ~f J from f J (n) on the re�ned grid
2� j= 2Z � Z, which is invariant under Sk2� j= 2 , by

~f J := (( f J )" 2j= 2 � 1 hj= 2): (16)

Recall that on this new grid 2� j= 2Z � Z, the shear operator Sk2� j= 2 becomes Sk with
integer entries. This allows ~f J now to be resampled by Sk , followed by reversing the
previous convolution and upsampling, i.e.,

Sd
2� j= 2 k (f J ) :=

�
(( ~f J )(Sk � )) � 1 hj= 2

�

#2j= 2
: (17)

which combined with (16) performs the application of Sk2� j= 2 to discrete data f J . Fig-
ure 4 illustrates how this approach effectively removes oth erwise appearing aliasing
effect.
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(a) (b) (c)

Fig. 4. (a) f d : Digital image of 1f x :x 1 =0 g . (b) Sd
� 1=4(f d ) : Sheared image. (b) Magnitude of the DFT of

Sd
� 1=4 (f d ).

Finally, combining (15) with the digital shear operator Sd
2� j= 2 k just de�ned by (16)

and (17), yields a faithful digital shearlet transform as fo llows.

De�nition 3.1. Let f J 2 `2(Z2) be the scaling coef�cients given in (7). Then the
digital shearlet transform associated with 	(  ; c) is de�ned by

DST 2D
j;k;m (f J ) = (  d

j;k � f J )(2J A � 1
2j M cj m) for j = 0 ; : : : ; J � 1;

where

 d
j;k = Sd

k=2j= 2 (pj � Wj );

with the shearing operator de�ned by (16) and (17), and the sa mpling matrix M cj

chosen so that 2J A � 1
2j M cj m 2 Z2.

3.2.2. The General Case. The digitalization of the shearlet transform associated wi th
the special case of a classical cone-adapted discrete shear let system as de�ned
in De�nition 3.1 shall now be extended to universal shearlet systems, where the
parabolic scaling matrices are generalized to A � j ;2j = diag(2j ; 2� j j= 2) and ~A � j ;2j =
diag(2� j j= 2; 2j ) with � j 2 (0; 2) (cf. Subsection 2.2). In this general setting, the range of
the shearing parameter k 2 Z is given as jkj � d 2(2 � � j ) j= 2e in each cone for each scale
j 2 N0. The associated shearlet coef�cients are then given by

hf;  j;k;m i = hf (Sk=2(2 � � j ) j= 2 � );  j; 0;m ( � )i ; (18)

where  j; 0;m ( � ) = 2
(2+ � j ) j

4  (A � j ;2j � � m).
From now on, we retain notations from the previous section, o therwise we specify

them. To digitalize (18), we slightly change the range of she arings jkj � d 2(2 � � j ) j= 2e to
jkj � 2d(2 � � j ) j= 2e, the reason being that then the number of shearings is determ ined
by dyadic scales. Thus, also to have an integer scaling matri x, we now consider the
slightly modi�ed version of (18) given by

hf (Sk=2d j � );  j; 0;m ( � )i with dj := d(2 � � j )j=2e; (19)

where

 j; 0;m ( � ) = 2
2 j � d j

2  (Adj � � m) and Adj := diag(2j ; 2j � dj ):

Again we have to digitalize parts (I) and (II). Starting with part (I), the coef�cients
hf;  j; 0;m i can be digitalized similar to (15), except for changing A2j to Adj , i.e., chang-
ing the scaling parameter j=2 to j � dj . Then the resulting discretization for  j; 0;m
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essentially follows the � j scaling operator A � j ;2j in the sense that j � dj � � j (j=2) for
suf�ciently large j . In short, we obtain

hf;  j; 0;m i = ( f J � (pj � Wj ))( A � 1
dj

2J M cj m); (20)

for which we modify pj and Wj so that pj (n) are now the Fourier coef�cients of
P(2J � j � 1� 1; 2J � ( j � dj ) � 2) with a 2D fan �lter P and Wj = gJ � j 
 hJ � ( j � dj ) and the
sampling matrix M cj chosen so that A � 1

dj
2J M cj m 2 Z2.

Concerning part (II), we just need to slightly modify (16) an d (17) to become

Sd
k=2d j (f J ) :=

�
(( ~f J )(Sk � )) � 1 hdj

�

#2d j
(21)

where
~f J = (( f J )" 2d j � 1 hdj ) (22)

and �lter coef�cients hdj are de�ned as in (5).
Thus, concluding, we derive the following digitalization o f the universal shearlet

transform associated with the shearlets from 	(  ; �; c ).

De�nition 3.2. Let f J 2 `2(Z2) be the scaling coef�cients given in (7). Then the
digital shearlet transform associated with 	(  ; �; c ) is de�ned by

DST 2D
j;k;m (f J ) = (  d

j;k � f J )(2J A � 1
dj

M cj m) for j = 0 ; : : : ; J � 1;

where

 d
j;k = Sd

k=2j= 2 (pj � Wj ) (23)

with the shearing operator de�ned by (22) and (21), pj and Wj modi�ed as explained
above, and the sampling matrix M cj chosen so that 2J A � 1

dj
M cj m 2 Z2.

3.3. 3D Shearlet Transform

Following the approach of the 2D case, we choose the 3D shearl et generator  by

 ̂ (� ) =
�

P
�
� 1=2; � 2

�
 ̂ 1(� 1)�̂ 1(� 2)

�
�
�

P
�
� 1=2; � 3

�
�̂ 1(� 3)

�
(24)

so that – as it was also the idea in the 2D case –  ̂ well approximates the 3D band-
limited shearlet generator in the sense that

P
�
� 1=2; � 2

�
 ̂ 1(� 1)�̂ 1(� 2) �  ̂ 1(� 1)�̂ 1(� 2=�1) and P

�
� 1=2; � 3

�
�̂ 1(� 3) � �̂ 1(� 3=�1):

Similar to the 2D case, we may choose compactly supported fun ctions  1 and � 1, and a
�nite 2D fan �lter satisfying (9) and (10), respectively. Th en we have

j�̂ (� )j2 +
X

j � 0

X

j k j�d 2j= 2 e

�
j ̂ j;k; 0(� )j2 + j ~̂ j;k; 0(� )j2 + j �̂ j;k; 0(� )j2

�
> min( � 3

2 ; � 1� 2
2 � 2

3);

where jkj = max( jk1 j; jk2j), � = � 1 
 � 1 
 � 1, ~ j;k;m (x1; x2; x3) =  j;k;m (x2; x1; x3) and
� j;k;m (x1; x2; x3) =  j;k;m (x3; x1; x2). This inequality provides a lower frame bound pro-
vided that  1 and � 1 decay suf�ciently fast in frequency and  1 has suf�cient vanishing
moments. Also, an upper frame bound can be obtained from the f ast decay rate of  ̂
generated by those 1D functions  1 and � 1. We refer to [Kutyniok et al. 2012a] for more
details.
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We next discuss a digitalization of the associated shearlet coef�cients hf;  j;k;m i
again only from 	(  ; �; c ), where f is given by

f (x) =
X

n 2 Z3

f J (n)2J � 3=2� 1 
 � 1 
 � 1(2J x � n): (25)

3.3.1. The Parabolic Case. We start with the parabolic case, i.e., � j = 1 for all scales j .
Recalling the 3D parabolic scaling matrix A2j = diag(2j ; 2j= 2; 2j= 2) from Subsection 2.2,
we now consider

�̂ j;k 1 (� 1; � 2) = ( �̂ 1 � P)
�

Q� 1
�

ST
� k1

A � 1
2j (� 1; � 2)T

��
;

�̂ j;k 2 (� 1; � 3) = ( �̂ 1 � P)
�

Q� 1
�

ST
� k2

A � 1
2j (� 1; � 3)T

��
;

and


 j;k;m (� ) =
� m1

2j � k1
m2

2j � k2
m3

2j

�
� 1 + m2

� 2

2j= 2
+ m3

� 3

2j= 2
:

Using the generator (24), our 3D shearlets  j;k;m are then de�ned by

 ̂ j;k;m (� ) =
1
2j  ̂ 1

�
� 1=2j �

�̂ j;k 1 (� 1; � 2)�̂ j;k 2 (� 1; � 3)e� 2�i
 j;k;m ( � ) : (26)

Since � j;k 1 and � j;k 2 are functions of the form of 2D shearlets, they might be discr etized
similar as in De�nition 3.1 – though omitting the convolutio n with the high-pass �lter
gJ � j –, which gives ( � x i denoting 1D convolution along the x i axis)

� d
j;k 1

(n1; n2) =
�

Sd
k1 2� j= 2 (hJ � j= 2 � x 2 pj )

�
(n1; n2)

and

� d
j;k 2

(n1; n3) =
�

Sd
k2 2� j= 2 (hJ � j= 2 � x 3 pj )

�
(n1; n3):

Finally, by (4), a 1D wavelet 2j= 2 1(2j � ) can be digitalized by the 1D �lter gJ � j . This
gives rise to 3D digital shearlet �lters  d

j;k speci�ed in the de�nition below, which
discretize  j;k;m from (26). Summarizing, our digitalization of the shearlet transform
associated with the shearlets from 	(  ; c) (i.e., the parabolic case) is de�ned as follows.

De�nition 3.3. Let f J 2 `2(Z3) be the scaling coef�cients given in (25), and retain
the de�nitions and notions of this subsection. Then the digital shearlet transform as-
sociated with 	(  ; c) is de�ned by

DST 3D
j;k (f J )(m) = ( f J �  

d
j;k )( ~m) for j = 0 ; : : : ; J � 1;

where the 3D digital shearlet �lters  d
j;k are de�ned by

 ̂ d
j;k (� ) = ĝJ � j (� 1)�̂ d

j;k 1
(� 1; � 2)�̂ d

j;k 2
(� 1; � 3)

and

~m = (2 J � j cj
1m1; 2J � j= 2cj

2m2; 2J � j= 2cj
3m3)

with the sampling constants cj
1; cj

2 and cj
3 chosen so that ~m 2 Z3.

The chosen 3D digital shearlet �lters are illustrated in Fig ure 5.
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(a) (b) (c)

Fig. 5. 3D digital shearlets in the frequency domain:  ̂ d
j;k

3.3.2. The General Case. We now describe the digitalization of the 3D universal shear -
let transform. Similar to the 2D situation, we �rst slightly modify the 3D scaling
matrix A � j ;2j to consider integer matrices Adj = diag(2j ; 2j � dj ; 2j � dj ) with dj =
d(2 � � j )j=2e for each scale j 2 N0. Also the shearing parameters k1; k2 2 Z range from
� 2d(2 � � j ) j= 2e to 2d(2 � � j ) j= 2e. Again following the 2D approach, the 3D digital shearlet
�lters  d

j;k de�ned in De�nition 3.3 are generalized by modifying � d
j;k 1

and � d
j;k 2

to be

� d
j;k 1

(n1; n2) =
�

Sd
k1 2� d j (hJ � ( j � dj ) � 1 pj )

�
(n1; n2) (27)

and

� d
j;k 2

(n1; n3) =
�

Sd
k2 2� d j (hJ � ( j � dj ) � 1 pj )

�
(n1; n3); (28)

where pj (n) are the Fourier coef�cients of P(2J � j � 1� 1; 2J � ( j � dj ) � 2) with a 2D fan �lter
P, the 1D �lter hJ � ( j � dj ) is de�ned as in (5), and Sd

k2 2� d j
is the discrete shear opera-

tor de�ned in (21). Thus, the 3D digital shearlet transform a ssociated with universal
shearlets is de�ned as described in the following de�nition .

De�nition 3.4. Let f J 2 `2(Z3) be the scaling coef�cients given in (25), and retain
the de�nitions and notions of this subsection. Then the digital shearlet transform as-
sociated with 	(  ; �; c ) is de�ned by

DST 3D
j;k (f J )(m) = ( f J �  

d
j;k )( ~m) for j = 0 ; : : : ; J � 1;

where the 3D digital shearlet �lters  d
j;k are de�ned using (27) and (28) by

 ̂ d
j;k (� ) = ĝJ � j (� 1)�̂ d

j;k 1
(� 1; � 2)�̂ d

j;k 2
(� 1; � 3)

and

~m = (2 J � j cj
1m1; 2J � j= 2cj

2m2; 2J � j= 2cj
3m3)

with the sampling constants cj
1; cj

2 and cj
3 chosen so that ~m 2 Z3.

3.4. Inverse Shearlet Transform

In this section, we de�ne an inverse digital shearlet transf orm, which provides a stable
reconstruction of f J 2 `2(Zd) from the shearlet coef�cients obtained by the digital
shearlet transforms from Subsections 3.2 and 3.3. For this, we will consider only the
2D parabolic case retaining notations of Subsection 3.2.1, since this can be extended
to the general 2D case as well as the 3D case in a straightforwa rd manner.

We �rst observe that in general, the forward shearlet transf orm de�ned in De�ni-
tion 3.2 can be inverted by a frame reconstruction algorithm based on the conjugate
gradient method due to frame property of shearlets – see [Mal lat 2008].
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It seems impossible to obtain a direct reconstruction formu la unless we skip subsam-
pling, which would then lead to a highly redundant transform . However, one possibility
was indeed recently discovered in [Kutyniok and Lim 2013] in the parabolic situation,
which we now describe. In this approach, we �rst set cj

1 = 2 j � J and cj
2 = 2 j= 2� J in Def-

inition 3.1. In this situation, the digital shearlet transf orm is merely a 2D convolution
with shearlet �lters, yielding a shift-invariant linear tr ansform. Hence, for f J 2 `2(Z2),
the digital shearlet transform takes the form

DST 2D
j;k;m (f J ) = f J �  

d
j;k (m): (29)

As indicated before, the digital shearlet �lters ~ d
j;k corresponding to ~ j;k;m are derived

by switching the order of variables, which implies that the s ame convolution formula
as (29) holds for the shearlet transform associated with ~	( ~ ; c), and we can de�ne

^DST 2D
j;k;m (f J ) = f J � ~ d

j;k (m): (30)

Let us now select separable low-pass �lter by

�̂ d(� ) = ĥJ (� 1) � ĥJ (� 2);

set

	̂ d(� ) := j�̂ d(� )j2 +
J � 1X

j =0

X

j k j� 2d j= 2e

�
j ̂ d

j;k (� )j2 + j ~̂ d
j;k (� )j2

�
; (31)

and also de�ne dual shearlet �lters by

'̂ d(� ) =
�̂ d(� )

	̂ d(� )
; 
̂ d

j;k (� ) =
 ̂ d

j;k (� )

	̂ d(� )
; ~̂
 d

j;k (� ) =
~̂ d

j;k (� )

	̂ d(� )
: (32)

Using (29) and (30), the Fourier transform of f J can be written as

f̂ J =
f̂ J

	̂ d

�
j �̂ d j2 +

J � 1X

j =0

X

j k j� 2d j= 2e

�
j ̂ d

j;k j2 + j ~̂ d
j;k j2

��

= f̂ J � (�̂ d)� �̂ d

	̂ d
+

J � 1X

j =0

X

j k j� 2d j= 2e

�
f̂ J � ( ̂ d

j;k )�  ̂ d
j;k

	̂ d
+ f̂ J � ( ~̂ d

j;k )�
~̂ d

j;k

	̂ d

�

= f̂ J � (�̂ d)� '̂ d +
J � 1X

j =0

X

j k j� 2d j= 2e

F (DST 2D
j;k;m (f J )) 
̂ d

j;k + F ( ^DST 2D
j;k;m (f J )) ~̂
 d

j;k ;

where F : `2(Z2) ! L 2([0; 1]2) is de�ned as the (discrete time) Fourier transform and
� as a superscript denotes the complex conjugate. These consi derations then yield the
reconstruction formula given by

f J = ( f J � �
d
) � ' d +

J � 1X

j =0

X

j k j� 2d j= 2e

(DST 2D
j;k;m (f J )) � 
 d

j;k

+
J � 1X

j =0

X

j k j� 2d j= 2e

( ^DST 2D
j;k;m (f J )) � ~
 d

j;k : (33)
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Now turning to the more general situation of universal shear let systems, it can be
easily observed that the de�nition of the dual shearlet �lte rs from (32) can be extended
using the generalized digital shearlet �lters  d

j;k from De�nition 3.2. In addition, the

de�nition of 	̂ d in (31) then needs to be generalized to

	̂ d(� ) =: j�̂ d(� )j2 +
J � 1X

j =0

X

j k j� 2d j

�
j ̂ d

j;k (� )j2 + j ~̂ d
j;k (� )j2

�

with the generalized digital shearlet �lters  d
j;k in this case.

4. IMPLEMENTATION: SHEARLAB 3D

An implementation of the digital transforms

� 2D Digital Shearlet Transform,
� 3D Digital Shearlet Transform,
� Forward 2D Digital Shearlet Transform,
� Inverse 3D Digital Shearlet Transform,

described in Section 3 is provided in the MATLAB toolbox Shea rLab 3D, which can
be downloaded from www.shearlab.org. ShearLab 3D requires the Signal Processing
Toolbox and the Image Processing Toolbox of MATLAB. If addit ionally the Parallel
Computing Toolbox is available, CUDA-compatible NVidia gr aphics cards can be used
to gain a signi�cant speed up.

The ShearLab 3D toolbox provides codes to compute the digita l shearlet transform
of arbitrarily sized two- and three-dimensional signals ac cording to the formulas in
De�nitions 3.2 and 3.3 as well as the inverse shearlet transf orm (33). Applying the con-
volution theorem, these formulas can be computed by multipl ying conjugated digital
shearlet �lters  d

j;k , their duals 
 d
j;k , and the given signal f J in the frequency domain.

We now provide more details on the forward (Subsection 4.1) a nd inverse transform
(Subsection 4.2), provide a brief example for a potential us e case (Subsection 4.3), dis-
cuss the possibility to avoid numerical instabilities alon g the seam lines (Subsection
4.4), and compute the complexity of our algorithms in Subsec tion 4.5.

4.1. Forward Transform

A schematic descriptions of the forward transform is given i n Algorithm 1.
As can be seen from Algorithm 1, the computation of a shearlet decomposition of a

2D signal f 2 `2(Z2) with ShearLab 3D requires the following input parameters:

� nScales: The number of scales of the shearlet system associated with the desired
decomposition. Each scale corresponds to a ring-like passb and in the frequency
plane that is constructed from the quadrature mirror �lter p air de�ned via the
lowpass �lter quadratureMirrorFilter . These frequency bands can then be further
partitioned into directionally sensitive elements using a 2D directional �lter. Note
that nScalescan also be viewed as the upper bound of the parameter j in De�nitions
3.2 and 3.3. Naturally, increasing the number of scales sign i�cantly increases the
redundancy of the corresponding shearlet system.

� shearLevels: A vector of size nScales, specifying for each scale the �neness of the
partitioning of the corresponding ring-like passband. The larger the shear level
at a speci�c scale, the more differently sheared atoms will l ive on this scale with
increasingly smaller essential support sizes in the freque ncy domain. To be precise,
let dj be the j -th component in shearLevels. Then, in the 2D case this choice will
generate the shearlet �lters  d

j;k de�ned in De�nition 3.2 and associated with the
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ALGORITHM 1: ShearLab 3D forward transform

Input : A signal f 2 RX � Y � Z , the number of scales nScales 2 N, a vector shearLevels 2 NnScales

specifying the number of differently sheared �lters on each scale, a matrix
directionalF ilter specifying the directional �lter P (compare equation (23)) and a vector
quadratureMirrorF ilter describing the lowpass �lter h1 of a quadrature mirror �lter
pair.

Output : Coef�cients shearletCoeffs 2 RX � Y � Z � R where R denotes the redundancy of the
applied shearlet system.

// Compute shearlet filters in the frequency domain of size X � Y � Z according to
the parameters nScales and shearLevels .

shearletFilters :=
computeShearletFilters( X; Y; Z; nScales; shearLevels; directionalFilters ; quadratureMirrorFilter );

// Compute frequency representation of the input signal.
f freq := FFT( f );

// For each shearlet filter, compute a three-dimensional ve ctor (or two-dimensional,
for 2D input) of shearlet coefficients of size X � Y � Z as the convolution of
the time-domain representation of the shearlet filter with the input signal f .
According to the convolution theorem, this can be done by poi ntwise
multiplication (denoted by .*) in the frequency domain.

for i := 1 to R do

shearletCoeffs(i) := IFFT
�

shearletFilters(i) .* f freq

�
;

end

scaling matrix Adj . With this choice, the range of shearing parameters k is given by
jkj � 2dj for each cone, which generates 2(2 � 2dj + 1) shearlet �lters for each scale j .

� directionalFilter : A 2D directional �lter that is used to partition the passban ds of
the several scales and hence serves as the basis of the direct ional 'component' of the
shearlets. Our default choice in ShearLab 3D is a maximally � at 2D fan �lter (see
[da Cunha et al. 2006] and Figure 9). Other directional �lter s can for instance be
constructed using the d�lters method from the Nonsubsampled Contourlet Toolbox.
This value corresponds to the trigonometric polynomial P from equation (8).

� quadratureMirrorFilter : A 1D lowpass �lter de�ning a quadrature mirror �lter pair
with the corresponding highpass �lter and thereby a wavelet multiresolution analy-
sis. These �lters induce the passbands associated with the s everal scales, the num-
ber of which is de�ned by the parameter nScales. The default choice in ShearLab
3D is a symmetric maximally �at 9-tap lowpass �lter (for an ex tensive discussion of
the properties of this �lter, see Subsection 5.1); but basic ally, any lowpass �lter can
be used here. This parameter corresponds to h1 in equation (5).

Given the parameters nScales, shearLevels, quadratureMirrorFilter and
directionalFilter , ShearLab 3D can compute a set of 2D digital shearlet �lters
whose inner products with a given 2D signal (and all its trans lates) are the desired
shearlet coef�cients (see Algorithm 1). As each shearlet co ef�cient corresponds to one
shearlet with a speci�c scale, a speci�c shearing, and a spec i�c translation, the total
number of coef�cients computed by one shearlet decompositi on is X � Y � R, where
X and Y denote the size of the given signal (and therefore the number of different
translates) and R denotes the redundancy of the shearlet system, which is de�n ed by
the parameters nScales and shearLevels. In fact, the redundancy R including the low
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frequency part is given by

R = 1 +
j 0 + nScales� 1X

j = j 0

2(2 � 2dj + 1) ;

where j 0 is the coarsest scale j = j 0 for the shearlet transform, and one can specify any
nonnegative integer for j 0.

Let us now consider the 3D situation. Due to the formula for  d
j;k in De�nition 3.3, we

know that a 3D digital shearlet �lter can be constructed by co mbining two 2D digital
shearlet �lters living on the same scale but with possibly di ffering shearings. There-
fore, the input parameters for a three-dimensional decompo sition are the same as in
the 2D case but their meanings slightly differ. Where in 2D, e ach scale corresponds to a
ring-like passband, in the 3D case each scale is associated w ith a sphere-like passband
in the 3D frequency domain with the parameter nScales de�ning the number of such
spheres. The parameter shearLevels on the other hand still de�nes the number of dif-
ferently sheared atoms on one scale but there are two shearin g parameters k = ( k1; k2)
for a shearlet in 3D and the 3D frequency domain is partitione d in three pyramids
instead of two cones.

To be more precise, let dj be a j -th component in shearLevels. Then the shearlet
�lters  d

j;k de�ned in De�nition 3.3 and associated with the 3D scaling ma trix Adj

are generated. In this case, the range of shearing parameter s k = ( k1; k2) is given by
maxfj k1j; jk2 jg � 2dj for each pyramid, which gives 3(2 � 2dj +1) 2 shearlet �lters for each
scale j . Thus, in the 3D case, the redundancy R is given by

R = 1 +
j 0 + nScales� 1X

j = j 0

3(2 � 2dj + 1) 2:

4.2. Inverse Transform

A schematic description of the inverse transform is given in Algorithm 2.

ALGORITHM 2: ShearLab 3D inverse transform
Input : A set of shearlet coef�cients shearletCoeffs 2 RX � Y � Z � R and dual shearlet �lters

dualFilters 2 CX � Y � Z � R in the frequency domain, where R denotes the redundancy of
the corresponding shearlet system.

Output : A reconstructed signal frec 2 RX � Y � Z .
frec := 0
// The reconstructed signal f rec is computed as the sum over all convolutions of the

dual shearlet filters with their corresponding three-dime nsional vectors
(two-dimensional for 2D data) of shearlet coefficients. Du e to the convolution
theorem, this can be computed using pointwise multiplicati on (denoted by .*) in
the frequency domain.

for i := 1 to R do
frec := frec + FFT( shearletCoeffs(i)).*dualFilters(i) ;

end
frec := IF F T (frec);

To perform an inverse transform in both 2D and 3D (see algorit hm 2), ShearLab 3D
requires a set of shearlet coef�cients and the correspondin g digital shearlet �lters from
which the dual �lters can be computed according to formula (3 2). The reconstructed
signal is then the sum over all dual �lters multiplied with th eir corresponding coef�-
cients.

ACM Transactions on Mathematical Software, Vol. V, No. N, Ar ticle A, Publication date: January YYYY.



A:22 G. Kutyniok et al.

4.3. Example

We next provide a brief example of how to use ShearLab 3D to dec ompose and recon-
struct a 2D signal in MATLAB. Figure 6 shows the MATLAB coding side, and Figure
7 the visual outcome.

nScales = 4;
shearLevels = [1 ,1 ,2 ,2 ] ;
% th is f l ag i s used to determine whether CUDA is used or not .
useGPU = 0;
% th is f l ag can be used to in h ib i t the omission of shera le t f i l t e r s on the seam l in es .
% i t i s opt iona l with defau l t value 0.
fullSystem = 0;

% load the lenna image .
img = double ( imread ( ' lenna . jpg ' ) ) ;

% construct d i g i t a l shear le t f i l t e r s with a defau l t 1D lowpa ss and
% a defau l t 2D d i r ec t i on a l f i l t e r .
system = SLgetShearletSystem2D (useGPU, s ize ( img , 1 ) , s ize ( img , 2 ) , nScales , shearLevels , fullSystem ) ;

% compute shear le t decomposit ion
s h ea r le t Coe f f i c i en t s = SLsheardec2D ( img , system ) ;

% compute shear le t recons t ruc t ion
recons t ruc t ion = SLshearrec2D( shear le tCoef f ic i en ts , sy stem ) ;

Fig. 6. Decomposition and reconstruction of a 2D image in MATLAB us ing ShearLab 3D. The applied shear-
let system has four scales and the array shearLevels induces a parabolic scaling. The array shearletCoef�-
cients is three-dimensional in the 2D and four-dimensional in the 3 D case. In both cases, the last dimension
enumerates all digital shearlet �lters within the speci�ed system with different shearing parameters k and
scaling parameters j while the �rst two or three dimensions are associated with th e translates of one single
shearlet (see Figure 7).
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Fig. 7. The two images to the right show all shearlet coef�cients of the translates of two different shearlets.
The used system has four scales, a redundancy of 49 and was speci�ed with nScales = 4 and shearLevels =
[1; 1; 2; 2]. The shearlet corresponding to the coef�cients in the cente red picture has a scale parameter j = 1
a shearing parameter k = 2 and lives on the horizontal frequency cones. The shearlet co rresponding to the
coef�cients plotted in the rightmost image has a scale param eter j = 2 , a shearing parameter k = 0 and
lives on the vertical frequency cones.

4.4. Omission of Boundary Shearlets

Let now  d
j;k and ~ d

j;k , k = � dj , be the four shearlet �lters as de�ned in De�nition 3.2.
We notice that the support of each of those �lters is concentr ated on the boundary of
the horizontal cones (or the vertical cones). Even more, the �lter  d

j;k is almost identical

to ~ d
j;k when k = � dj , which is illustrated in Figure 8. For this reason, in ShearL ab 3D
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Fig. 8. The magnitude frequency response of the maximally sheared shearlet in the vertical cones (right
image) is almost equal to the response of the corresponding s hearlet in the horizontal cones (left image). In
most cases, one of these �lters can be omitted to decrease the redundancy of a shearlet system.

the boundary shearlet �lters in the vertical cones are remov ed for each scale j in order
to improve stability as well as ef�ciency. This leads to 2(2 � 2dj + 1) � 2 = 2dj +2 shear-
let �lters at each scale j . As a example, letting dj = dj=2e yields 8; 8; 16; 16 shearlet
�lters for j = 1 ; 2; 3; 4 (see Figure 10), which corresponds to the parabolic case. In this
example, the redundancy R can be computed to be 1 + 8 + 8 + 16 + 16 = 49 .

A similar strategy can be applied in the 3D case: All boundary shearlet �lters whose
frequency support is concentrated on the boundary of two pyr amids among three are
removed, yielding

3(2 � 2dj + 1) 2 � 6(2 � 2dj + 1) + 4

3D shearlet �lters for each scale j . Again as an example, consider dj = dj=2e. In this
case, we have 49; 49; 193shearlet �lters for j = 1 ; 2; 3 (compare also Figure 10), which
corresponds to the parabolic case.

It should be mentioned that in ShearLab 3D the user has the opt ion of including
those boundary elements again if needed.

4.5. Complexity

Since convolution can be used, both the decomposition and th e reconstruction algo-
rithm reduce to multiple computations of the Fast Fourier Tr ansform. Thus, their com-
plexity is given by O (R � N log(N )) , where R 2 N is the redundancy of the speci�c
digital shearlet system, i.e., the number of digital shearl et �lters �lters  d

j;k .

5. NUMERICAL EXPERIMENTS

This section is devoted to an extensive set of numerical expe riments. The parameters
in ShearLab 3D chosen for those results are speci�ed in Subse ction 5.1, followed by
a detailed description of the transforms we compare our resu lts to (see Subsection
5.2). We then focus on the following problems: 2D/3D denoisi ng, 2D/3D inpainting,
and also 2D decomposition of point and curvelike structures , which are the contents
of Subsections 5.3 to 5.7. The results of the numerical exper iments are discussed in
Subsection 5.8.

All experiments have been performed with MATLAB 2013a on an I ntel(R)
Core(TM)2 Duo CPU E6750 processor with 2.66GHz and a NVIDIAG eForce GTX 650
Ti graphics card with 2GB RAM. The scripts and input data for a ll experiments are
available at www.shearlab.org in support of the idea of repr oducible research.
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5.1. Selection of Parameters

As discussed in Subsection 3.2, the construction of a 2D digi tal shearlet �lter  d
j;k , re-

quieres a 1D lowpass �lter h1 and a 2D directional �lter P, compare equation (23). The
1D �lter h1 de�nes a wavelet multiresolution analysis – and thereby the highpass �lter
g1 –, whereas the trigonometric polynomial P is used to ensure a wedge shape of the
essential frequency support of  d

j;k . The choice of these �lters certainly signi�cantly im-
pacts crucial properties of the generated digital shearlet system such as frame bounds
and directional selectivity.

Our choice for h1 – from now on denoted by hShearLab – is a maximally �at, i.e. a max-
imum number of derivatives of the magnitude frequency respo nse at 0 and � vanish,
and symmetric 9-tap lowpass �lter 1 which is normalized such that

P
n hShearLab (n) = 1 .

For an illustration, we refer to Figure 9(a) and (b). This �lt er has two vanishing
moments, i.e.

R
� (x)xk = 0 for k 2 f 0; 1g. While there is no symmetric, compactly

supported, and orthogonal wavelet besides the Haar wavelet , the renormalized �lterp
2hShearLab at least approximately ful�lls the orthonormality conditi on, which is

�
�
�
�
�
2

X

n

hShearLab (n)hShearLab (n + 2 l) � � l 0

�
�
�
�
�

� 0:0018 for all l 2 Z;

with � denoting Kronecker's delta. We remark that by choosing hShearLab to be maxi-
mally �at, the amount of ripples in the digital �lter  d

j;k is signi�cantly reduced. This
leads to an improved localization of the associated digital shearlets in the frequency
domain. The highpass �lter g1, hereafter denoted by gShearLab , is certainly chosen to
be the associated mirror �lter, that is

gShearLab (n) = ( � 1)n � hShearLab (n):

We would like to mention that the �lter coef�cients hShearLab are quite similar to
those of the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet [ Cohen et al. 1992], which
is used in the JPEG 2000 standard. While the CDF 9/7 wavelet ha s four vanishing mo-
ments and higher degrees of regularity both in the H ölder and Sobolev sense, trading
these advantageous properties for maximal �atnass seems to be the optimal choice for
most applications.

For the trigonometric polynomial PShearLab , we use the maximally �at 2D fan �lter 2

described in [da Cunha et al. 2006]. This �lter is illustrate d in Figure 9(c).
For the numerical experiments, we used two different digita l shearlet systems in

both the 2D and 3D case, the reason being that this allows us to demonstrate how
different degrees of redundancy in�uence the performance o f ShearLab 3D. The two
considered 2D systems named SL2D1 and SL2D2, similarly SL3D1 and SL3D2 in 3D,
are constructed as follows. Notice that they all correspond to the case � = 1 , hence the
parabolic case.

The system SL2D1 has four scales with four differently oriented digital shea rlet
�lters on scales one and two, and eight directions in each of t he higher scales. Including
the 2D lowpass �lter, the total redundancy of this system is 25. We remark that a
maximally sheared �lter within the horizontal cones has alw ays an almost identical
counterpart contained in the vertical cones that can be omit ted without affecting the
performance in most applications. The system SL2D2 also consists of four scales, but

1The MATLAB command design(fdesign.lowpass('N,F3dB',8,0.5),'maxflat') generates the 9-tap �lter
hShearLab , whose approximate values are hShearLab = (0 :01049; � 0:02635; � 0:05178; 0:27635; 0:58257; :::).
2The 2D fan �lter PShearLab can be obtained in MATLAB using the Nonsubsampled Contourle t Toolbox by
the statement fftshift(fft2(modulate2(dfilters('dmaxflat4','d')./ sqrt(2),'c'))) .
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Fig. 9. (a) The coef�cients of the 1D lowpass �lter hShearLab . (b) Magnitude frequency response of
hShearLab . (c) Magnitude response of the 2D fan �lter PShearLab .

in contrast to SL2D2 has a redundancy of 49 with 8; 8; 16 and 16 differently oriented
shearlets on the respective scales.

In the 3D experiments, we used the three-scale digital syste ms SL3D1 with 13; 13
and 49 directions on scales one, two and three as well as the system SL3D2 with 49; 49
and 193 differently oriented shearlet �lters on the corresponding scales. The total re-
dundancy of SL3D1 is 76, while SL3D2 contains 292different digital 3D shearlet �lters.
These numbers along with other properties of these systems a re compiled in Figure 10.

Scales Directions Redundancy A B B/A
SL2D1 4 (4,4,8,8) 25 0.0893 1.0000 11.19
SL2D2 4 (8,8,16,16) 49 0.0669 1.0000 14.94
SL3D1 3 (13,13,49) 76 0.0075 1.0000 133.39
SL3D2 3 (49,49,193) 292 0.0045 1.0000 220.84

Fig. 10. Properties of the digital shearlet systems SL 2D 1 , SL 2D 2 , SL 3D 1 , and SL 3D 2 used in our numer-
ical experiments. Columns A and B show approximates of the lo wer and upper frame bounds.

5.2. Systems for Comparison

In a total of �ve different experiments, we compare the trans forms associated with
the shearlet systems SL2D1, SL2D2, SL3D1, and SL3D2 to various transforms simi-
larly associated with a speci�c representation system. In e ach of these experiments,
an algorithm based on a sparse representation of the input da ta is used to complete
a certain task like image denoising or image inpainting. In o rder to get a meaningful
comparison, we simply run the same algorithm with the same in put several times for
each of the transforms – i.e., with the associated represent ation system – for comput-
ing the sparse representation at each execution. To assess t he performance of a sparse
representation scheme, for each of the tasks we introduce a p erformance measure for
the quality of the output and also measure the overall runnin g time of the algorithm.

The transforms considered in our experiments besides the di gital shearlet transform
implemented in ShearLab 3D are:

� Nonsubsampled Shearlet Transform ( NSST, 2D & 3D) .
The NSST was introduced in 2006 by Labate, Easley, and Lim [Ea sley et al. 2008]
and later extended to a 3D transform by Negi and Labate [Negi a nd Labate 2012].
It is also based on the theory of shearlets and uses the nonsub sampled Laplacian
pyramid transform with specially designed bandpass �lters [da Cunha et al. 2006]
to decompose input data into several high-frequency layers and a low-frequency
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part, while directional �lters are constructed on the pseud o-polar grid from a
certain window function, e.g. the Meyer wavelet window. The main conceptional
difference to ShearLab 3D is that these directional �lters a re not compactly
supported in the time domain. Still, by representing the dir ectional �lters with
small matrices, the NSST also manages to construct digital s hearlet �lters that
are highly localized in the time domain. An implementation i s publicly available at
http://www.math.uh.edu/ � dlabate/software.html.

� Nonsubsampled Contourlet Transform ( NSCT , 2D).
The NSCT was developed by da Cunha, Zhou, and Do [da Cunha et al . 2006]
and uses a nonsubsampled pyramid decomposition as well as a d irectional �lter
bank based on two-channel fan �lter banks to construct direc tionally sensitive
digital �lters on several scales. It was shown that the NSCT c an be applied to
construct frames for `2(Z2) and that (band-limited) contourlets can achieve the
optimal approximation rate for cartoon-like images [Do and Vetterli 2005]. The
Nonsubsampled Contourlet Toolbox can be downloaded from ht tp://www.mathworks.
com/matlabcentral/�leexchange/10049-nonsubsampled-c ontourlet-toolbox.

� Fast Discrete Curvelet Transform ( F DCT , 2D).
Curvelets were �rst introduced in 1999 by Cand és and Donoho [Cand �es and Donoho
1999a] with the goal of constructing a non-adaptive frame of representing functions
providing optimal approximation rates for cartoon-like im ages. Indeed, the curvelet
transform was the �rst non-adaptive method published to ach ieve this and can be
viewed as a precursor to the theory of shearlets. The most sig ni�cant conceptional
differences are that the shearlet transform is associated w ith a single (or �nite set
of) generating function(s) that can be subject to anistropi c scaling and shearing,
while curvelet atoms are constructed by rotating 'mother' c urvelets that exist on
each scale. The FDCT used in our experiments is described in [ Cand �es et al. 2006]
and can be downloaded from http://www.curvelet.org/softw are.html.

� Surfacelet Transform ( SURF, 3D).
In the surfacelet transform, �rst published by Do and Lu in 20 07 [Do and Lu 2007],
the two-dimensional Bamberger and Smith directional �lter bank [Bamberger
and Smith 1992] (which is also used in the NSCT) is extended to higher dimen-
sions. Together with a pyramid transform similar to one deve loped by Simoncelli
and Freeman [Simoncelli et al. 1992], a directional selecti ve three-dimensional
multiscale transform can be constructed. An implementatio n is available at
http://www.mathworks.com/matlabcentral/�leexchange/ 14485-surfacelet-toolbox.

� Stationary Wavelet Transform ( SW T, 2D).
The SWT, also known as algorithme �a trous, is a redundant and translation invari-
ant version of the discrete wavelet transform. Instead of dy adically downsampling
the signal at each transition from one scale to another, the � lter coef�cients are dyad-
ically upsampled. In our experiments, we used the method SWT 2 from the MATLAB
Wavelet Toolbox.

5.3. Image Denoising

As input, we consider several grayscale images of size 512x5 12 that are distorted with
Gaussian white noise. In order to denoise these images, we us e hard thresholding on
the coef�cients of a sparse representation scheme before co mputing the reconstruction.
That is, for an image f 2 `2(Z2) and

f noisy (i; j ) = f (i; j ) + e(i; j )
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where e(i; j ) � N (0; � 2), we compute

f denoised = T � 1T� T f noisy ;

where T is the forward and T � 1 is the inverse transform associated with a certain
sparse representation scheme and T� is the hard thresholding operator given by

(T� x)(n) =
�

x(n) if jx(n)j � �;
0 else.

(34)

In order to increase the performance, we will use different t hresholds � j on different
scales j , that are of the form

� j = K j �

where for four scales, we typically have K = [ K j ]j = [2 :5; 2:5; 2:5; 3:8].
The quality of the reconstruction is measured using the peak signal-to-noise ratio

(PSNR), de�ned as

P SNR = 20 log10
255

p
N

kf � f denoised kF
(35)

where N is the number of pixels and k � kF denotes the Frobenius norm. Note that 255
is the maximum value a pixel can attain in a grayscale image.

We compare the performance of SL2D1, SL2D2, the nonsubsampled shearlet trans-
form NSST, the nonsubsampled contourlet transform NSCT , the fast discrete curvelet
transform F DCT , and the stationary wavelet transform SW T. All quantitative results
for a total of four grayscale images and several levels of noi se as well as the running
times and redundancies associated with the considered tran sforms are displayed in
Figure 11. For a visual comparison, we refer to Figure 19 in th e Appendix.

5.4. Image Inpainting

We consider a grayscale image f 2 `2(Z2) to be partially occluded by a binary mask
M 2 f 0; 1gZ� Z, i.e.,

f masked (i; j ) = f (i; j )M (i; j ):

The algorithm for inpainting the missing parts is based on an iterative thresholding
scheme published in 2005 by Starck et al. [Starck et al. 2005] (see also [Fadili et al.
2010] and Algorithm 3). In each step, a forward transform is p erformed on the unoc-

ALGORITHM 3: Image inpainting via iterative thresholding

Data : f masked , M , � init , � min , iterations
Result : f inpainted

f inpainted := 0 ;
� := � init ;
� := ( � min )1=( iterations � 1) ;
for i := 1 to iterations do

f res := M: � (f masked � f inpainted ); // :� denotes the pointwise multiplication
f inpainted := T � 1T� T (f res + f inpainted ); // Forward transform, thresholding, synthesis
� := �� ;

end

cluded parts of the image combined with everything already i npainted in the missing
areas. The resulting coef�cients are then subject to hard th resholding before an inverse
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Image Denoising: Running Times
Redundancy Running Time Running Time with CUDA

SL2D1 25 4:8 s 1:7 s
SL2D2 49 10:9 s 5:7 s
NSST 49 9:4 s -
NSCT 49 452 s -
F DCT 2.85 0:8 s -
SW T 13 0:7 s -

Image Denoising: Quantitative Results in PSNR
Lenna Barbara

� =10 20 30 40 50 10 20 30 40 50
SL2D1 35.79 32.51 30.52 29.01 27.79 33.38 29.42 27.03 25.40 24.37
SL2D2 35.90 32.75 30.87 29.43 28.26 33.63 29.98 27.83 26.28 25.17
NSST 35.85 32.83 31.06 29.69 28.58 33.56 29.91 27.75 26.20 25.15
NSCT 35.67 32.53 30.69 29.30 28.14 33.43 29.58 27.36 25.89 24.88
F DCT 34.01 31.41 29.71 28.38 27.33 28.96 25.47 24.48 23.87 23.43
SW T 34.19 30.79 28.91 27.64 26.62 31.08 26.55 24.55 23.55 23.00

Boat Peppers
� =10 20 30 40 50 10 20 30 40 50

SL2D1 33.06 30.00 28.16 26.87 25.86 34.10 31.78 30.04 28.67 27.49
SL2D2 33.14 30.18 28.42 27.17 26.18 34.12 31.92 30.32 29.06 27.97
NSST 33.05 30.09 28.34 27.14 26.20 34.05 31.84 30.26 29.05 28.02
NSCT 32.87 29.82 28.05 26.83 25.90 33.87 31.51 29.83 28.53 27.51
F DCT 30.73 28.36 27.00 25.99 25.16 32.37 29.67 28.17 27.11 26.25
SW T 31.54 28.23 26.45 25.31 24.47 33.09 30.39 28.44 26.99 25.92

Fig. 11. Numerical results of the image denoising experiment.

transform is carried out. By gradually decreasing the thres holding constant, this algo-
rithm approximates a sparse set of coef�cients whose synthe sis is very close to the
original image on the unoccluded parts.

Again, we use the PSNR de�ned in (35) to measure the qualitati ve performance and
to compare the systems SL2D1 and SL2D2 with the nonsubsampled shearlet trans-
form ( NSST), the fast discrete curvelet transform ( F DCT ) and the stationary wavelet
transform ( SW T). To maximize the quality of the output, we perform 300 iterations
during each inpainting task. Due to this heavy computationa l workload, we do not con-
sider the nonsubsampled contourlet transform ( NSCT ), as one iteration would already
take more than 7 minutes. Furthermore, we use three different types of masks to prop-
erly emulate several typical inpainting problems, which ar e displayed in Figure 12.
For the quantitative results and a compilation of running ti mes and redundancies see
Figure 13. A visual comparison is provided in Figure 20 in the Appendix.

5.5. Image Decomposition

We assume a given image f 2 `2(Z2) can be split into a curvilinear part f 0 and a part
f 1 containing isotropic blob-like structures in the sense of

f = f 0 + f 1: (36)

To compute a meaningful decomposition, we use a directional transform nicely adapted
to curvilinear structures (e.g., shearlets or curvelets) t ogether with the stationary
wavelet transform, and apply the iterative thresholding al gorithm from [Starck et al.
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Random (80 %occlusion) Squares (28 %occlusion) Text ( 25 %occlusion)

Fig. 12. Three different binary masks.

Image Inpainting: Running Times
Redundancy Running Time Running Time with CUDA

SL2D1 25 463 s 45:3 s
SL2D2 49 931 s 78:7 s
NSST 49 2495 s -
F DCT 2.85 193 s -
SW T 13 162 s -

Image Inpainting: Quantitative Results in PSNR
Lenna Barbara Flintstones

Rand Squares Text Rand Squares Text Rand Squares Text
SL2D1 32.17 33.11 31.44 26.59 30.08 29.70 23.84 24.16 22.98
SL2D2 32.08 33.92 32.57 27.82 31.53 31.05 23.59 25.14 23.72
NSST 32.31 33.79 32.78 27.62 31.23 30.93 24.12 24.89 23.57
F DCT 30.40 32.78 32.06 24.07 27.78 28.00 22.08 23.63 22.78
SW T 30.46 31.69 30.95 23.84 28.46 28.75 21.86 22.91 22.18

Fig. 13. Numerical results of the image inpainting experiment.

2005] (see also [Fadili et al. 2010] and Algorithm 4). During each iteration, the dif-

ALGORITHM 4: Image decomposition via iterative thresholding

Data : f , � init , � min , iterations
Result : ~f 0 ; ~f 1
~f 0 := ~f 1 := 0 ;
� := � init ;
� := ( � min )1=( iterations � 1) ;
for i := 1 to iterations do

f res := f � (f 0 + f 1);
~f 0 := T � 1

0 T� T0(f res + ~f 0); // Hard thresholding with anistropic transform
~f 1 := T � 1

1 T� T1(f res + ~f 1); // Hard thresholding with istropic transform
// To improve the quality of the result, you can add a total var iation

correction for the directional part
� := �� ;

end

ference between the input and the current blob-like image is subject to a directional
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transform, while the difference between the input and the cu rrent curvilinear image is
subject to a stationary wavelet transform. Before computin g the inverse transforms, a
hard thresholding operator is applied to both sets of coef�c ients. By gradually decreas-
ing the thresholding constant, this algorithm iteratively approximates an image close
to the curvilinear part of the original data whose coef�cien ts are sparse in the direc-
tional dictionary and an image close to the blob-like part of the original input whose
coef�cients are sparse with respect to the stationary wavel et transform. An example
can be seen in Figure 14.

f 0 f 1 f = f 0 + f 1

Fig. 14. In the image decomposition experiment, we try to recover th e curvilinear part f 0 and the isotropic
part f 1 from f = f 0 + f 1 .

To quantitatively measure the performance of a sparse repre sentation scheme, we
restrict our experiments to binary images as in Figure 14. Fu rthermore, we introduce
the operator B � , mapping images g 2 `2(Z2) to binary images with

(B � g)( i; j ) =
�

1 if jg(i; j )j � �;
0 else,

and the measures (see [Kutyniok and Lim 2012])

Q( ~f 0; � ) =
kg � f 0 � g � (B �

~f 0)k2

kg � f 0k2
;

Qopt ( ~f 0) = min
� 2f 0;:::; 255g

Q( ~f 0; � );

where ~f 0 is the curvilinear part computed by algorithm 3, g is a discrete two-
dimensional Gaussian �lter and � denotes the convolution. This de�nition can natu-
rally also be used for the blob-like part ~f 1.

As input for our experiment, we used the image depicted in Fig ure 14. We compared
the systems SL2D1 and SL2D2 to the directional transforms NSST and F DCT . The
numerical results together with redundancies and running t imes are compiled in Fig-
ures 15 and 16. For a visual comparison of the results, see Fig ure 21 in the Appendix.

5.6. Video Denoising

Similar to the two-dimensional case, we consider grayscale videos of size 192x192x192
distorted with Gaussian white noise. For a video f 2 `2(Z3), we have

f noisy (i; j; k ) = f (i; j; k ) + e(i; j; k )

where e(i; j; k ) � N (0; � 2), and compute

f denoised = T � 1T� T f noisy
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Image Decomposition: Quantitative Results and Running Tim es
Points Curves Redundancy Running Time

SL2D1 Qopt = 0.3991 Qopt = 0.2620 25 57:1 s
SL2D2 Qopt = 0.4288 Qopt = 0.1627 49 87:8 s
NSST Qopt = 0.4541 Qopt = 0.1996 49 203:7 s
F DCT Qopt = 0.4743 Qopt = 0.2040 2.85 84:9 s

Fig. 15. Numerical results of the image decomposition experiment.
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Fig. 16. The values Q( ~f 0 ; � ) and Q( ~f 1 ; � ) as functions of � .

where T denotes the forward and T � 1 the inverse transform associated with a sparse
approximation scheme and T� is the hard thresholding operator already de�ned in (34).
Again, our thresholds will be of the form

� j = K j �;

where j iterates the scales of the digital transform. Typically, we will use systems with
three scales and choose K = [ K j ]j = [3 ; 3; 4].

In total, we run our experiment with three different videos a nd noise levels ranging
from � = 10 to 50. To quantitatively compare the performance of ShearLab 3D w ith
the performance of the three-dimensional nonsubsampled sh earlet transform ( NSST)
and the surfacelet transform, we again calculate the peak si gnal to noise ratio (PSNR)
de�ned in (35). For a complete listing of our numerical resul ts, see Figure 17. A visual
comparison is provided in Figure 22 in the Appendix.

5.7. Video Inpainting

Analogous to the two-dimensional case, we consider graysca le videos f 2 `2(Z3) of size
192� 192� 192to be partially occluded by a binary mask M 2 f 0; 1gZ� Z� Z, i.e.,

f masked (i; j; k ) = f (i; j; k )M (i; j; k )

To �ll in the missing gaps, we run Algorithm 3 (see [Starck et a l. 2005] and [Fadili et al.
2010]) with 50 iterations.

In our video inpainting experiments, we use a random mask wit h 80 % occlusion
and a mask consisting of cubes of random size with 5 % occlusion. We compare the
systems SL3D1 and SL3D2 to the surfacelet transform SURF. All numerical results
are compiled in Figure 18, and for a visual comparsion we refe r to Figure 23 in the
Appendix.

ACM Transactions on Mathematical Software, Vol. V, No. N, Ar ticle A, Publication date: January YYYY.



A:32 G. Kutyniok et al.

Video Denoising: Quantitative Results in PSNR and Running T imes
Mobile Coastguard

� = 10 20 30 40 50 10 20 30 40 50
SL3D1 35.27 31.32 29.01 27.38 26.14 33.13 29.46 27.51 26.17 25.18
SL3D2 35.91 32.19 29.99 28.43 27.23 33.81 30.28 28.41 27.14 26.17
NSST 34.61 30.83 28.56 26.96 25.73 32.59 29.00 27.05 25.68 24.63
SURF 32.79 29.96 28.25 27.04 26.11 30.86 28.26 26.87 25.91 25.18
SL2D2 32.49 28.58 26.42 24.97 23.90 31.24 27.67 25.79 24.52 23.59

Tennis Redundancy Running Running Time
10 20 30 40 50 Time with CUDA

SL3D1 33.76 30.19 28.28 26.94 25.90 76 146 s 14:1 s
SL3D2 34.15 30.67 28.86 27.62 26.67 292 610 s 53:1 s
NSST 33.02 29.48 27.55 26.20 25.14 208 512 s -
SURF 29.95 27.34 26.02 25.11 24.43 6.4 33 s -
SL2D2 30.91 27.48 25.55 24.31 23.42 49 43 s 26:4 s

Fig. 17. Numerical results of the video denoising experiment.

Video Inpainting: Quantitative Results in PSNR and Running Times
Mobile Coastguard Redundancy Running Running Time

Rand Squares Rand Squares Time with CUDA
SL3D1 28.15 31.65 26.72 29.05 76 - 837 s
SL3D2 29.98 32.87 28.09 30.22 292 - 3101 s
SURF 22.40 28.24 21.50 27.1 6.4 852 s -
SL2D2 23.63 31.61 23.42 30.80 49 - 1350 s

Fig. 18. Numerical results of the video inpainting experiment.

5.8. Discussion

In all experiments, the sparse approximations provided by S hearLab 3D yield the
best results with respect to the applied quantitative measu res, except for some cases
where our algorithm is slightly outperformed by the nonsubs ampled shearlet trans-
form ( NSST) (see, for example, Figure 11). However, the NSST has signi�cantly worse
running times in most experiments, in particular, if a CUDA c apable GPU is available
(cf, e.g., Figure 13). In computationally heavy tasks like i mage or video inpainting, ap-
plying CUDA can lead to a signi�cantly increased speed (up to a factor 10 in Figures
13 and 17).

The main goal of our experiments was not to argue that the digi tal shearlet trans-
form implemented in ShearLab 3D is speci�cally adapted to a c ertain task like image
denoising, but to compare its applicability to other, simil ar transforms. That being said,
we would like to mention that our video denoising results are only marginally beaten
by the BM3D algorithm [Maggioni et al. 2012] which represent s – to our knowledge –
the current state of the art (PSNR values for the coastguard s equence,144� 176� 300,
� = 30, BM3D: 29:69, SL3D2: 29:54).
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original noisy ( � = 40; PSNR = 16:06) SL2D1 (PSNR = 25:40)

SL2D2 (PSNR = 26:28) NSST (PSNR = 26:20) NSCT (PSNR = 25:89)

F DCT (PSNR = 23:87) SW T (PSNR = 23:55)

Fig. 19. The Barbara image is distorted with Gaussian white noise wi th � = 40 and denoised using various
sparse approximation schemes.
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original occluded ( 80 %missing) SL2D1 (PSNR = 32:17)

SL2D2 (PSNR = 32:08) NSST (PSNR = 32:31) F DCT (PSNR = 30:40)

SW T (PSNR = 30:46)

Fig. 20. The Lenna image is occluded with a random binary mask and den oised using various sparse ap-
proximation schemes.
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original SL2D1 (curves, Qopt = 0 :26) SL2D1 (points, Qopt = 0 :40)

SL2D2 (curves, Qopt = 0 :16) SL2D2 (points, Qopt = 0 :44) NSST (curves, Qopt = 0 :20)

NSST (points, Qopt = 0 :45) F DCT (curves, Qopt = 0 :20) F DCT (points, Qopt = 0 :47)

Fig. 21. The optimal decompositions of a binary image obtained from applying algorithm 4 using four dif-
ferent directional transforms.
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original noisy ( � = 40 PSNR = 16:06) SL3D1 (PSNR = 26:17)

SL3D2 (PSNR = 27:14) NSST (PSNR = 25:68) SURF (PSNR = 25:91)

SL2D2 (PSNR = 24:52)

Fig. 22. The original, noisy and denoised frame 110 of the coastguar d sequence..
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original occluded ( 80 %missing) SL3D1 (P SNR = 28:15)

SL3D2 (P SNR = 29:98) SURF (P SNR = 22:40) SL2D2 (P SNR = 23:63)

Fig. 23. The original, occluded and inpainted frame 37 of the mobile sequence.
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