Discrete FOURIER phase retrieval:

ambiguities and uniqueness guarantees

Robert Beinert

KARL-FRANZENS-Universitat Graz

oth International Conference
‘Inverse Problems: Modeling & Simulation’
(Cirkewwa, Melliehia, Malta)

24 May 2018



DISCRETE-TIME PHASE RETRIEVAL



FORMULATION OF THE PROBLEM

Problem (Discrete-time phase retrieval)

Recover the unknown, complex-valued, and discrete-time signal x: Z — C
with finite support from its FOURIER intensity

X(w)| (0 eR).

J

Definition (Discrete-time FOURIER transform)

X(w) = Z x[n]e7" (w € R).

neZ

Besides the true signal x, the phase retrieval problem is solved by
« the rotated signal (ei“ x[n])nez,
- the shifted signal (x[n — ng]) ez,

« the reflected, conjugated signal (x[—n])qez.



NON-TRIVIAL AMBIGUITIES

Definition (Trivial and non-trivial ambiguities)

A trivial ambiguity is caused by rotation, shift, or reflection and conjugation.

All other occurring ambiguities are called non-trivial.

Example (Non-trivial ambiguities)
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CHARACTERIZING THE SOLUTIONS



AUTOCORRELATION SIGNAL AND FUNCTION

Definition (Autocorrelation signal)

a[n) = Y X[kIx[k+n]  (n€2).

kezZ

« The autocorrelation signal is conjugate symmetric, i.e.
a—n] = Z x[k] X[k = n] = Z x[k + n|x[k] = aln]  (ne Z),
kez kez

and has the support {-N +1,..., N — 1}, where N denotes the
support length of x.

Definition (Autocorrelation function)




PHASE RETRIEVAL IN THE FREQUENCY DOMAIN

- Relationship to the Fourier transform:

() = (nZ -'w")(%_k et)
= > > xlk+ nl x[k]e " = A(w).

neZ keZ
« The autocorrelation function is a non-negative trigonometric
polynomial of degree N — 1.

Equivalent problem

Find a trigonometric polynomial B such that

|B(@)[* = A(w).




ASSOCIATED POLYNOMIAL FeJER, RiEsz [1916]

Definition (Associated polynomial)

Pa(e™) = emio(N=1) Alw).

« The algebraic polynomial P4 is thus defined by

2N-2
Ps(z) = Z aln-N+1]z2" with al—n] = a[n].
n=0

« The zeros occur in pairs (y;, 7;1 ).
+ P4 has the factorization

N-1
Ps(z) = a[N — 1] l_l(z = yj)(z = 7;‘_1)-
j=1



FACTORIZATION OF THE AUTOCORRELATION FUNCTION Fejér, Riesz [1916]

« For z := e, the absolute value of the linear factors is

(e =) (™ =77 =171 e — | |7 - €|

|}/j| 1| —iw _ j| )
« A has the factorization
N-1
A@) = 1Pae™) = laN =11 [|(e™ - p))(e7™ -7")]
j=1

= | B(w)[?

-2

J=T

N-1
= laN=111 ] [1817"
j=1

with ﬁj € (}’j, 7j_1)'



NON-TRIVIAL AMBIGUITIES REAL cAsE: BRuCK, SODIN [1979]

Theorem (BEINERT, PLONKA [2015])

Let A be a non-negative trigonometric polynomial. Then the problem
2
| B(w)|” = Aw)

has at least one solution. Every solution has a representation of the form

o N-1 N-1 .
B(w) — ela+|wno |a[N _ 1] I nlﬁfl_] . l_[ (e—lw _ﬂj)’
j=1 j=1

where B; can be chosen from the zero pair (y;, 7;1 ) of the associated polyno-

mial Py.

« Each non-trivial solution is completely determined by its

corresponding zero set {B1, . .., Bn-1}-




NUMBER OF NON-TRIVIAL AMBIGUITIES

| The number of non-trivial ambiguities may vary from 1 up to 2N=2. |

Proposition (BEINERT [2015])

Let L be the number of distinct zero pairs (ye, 7;1 ) of P4 not lying on the unit
circle, and let mg be the multiplicity of these zero pairs. The corresponding

phase retrieval problem has

ﬁ me+1
e:

non-trivial ambiguities.




REPRESENTATION OF THE AMBIGUITIES IN TIME DOMAIN

Definition (Convolution of signals)

(x1 % x2)[n] = )" x1[k] xoln = k].

kez

\.

Theorem (BEINERT, PLONKA [2015])

Let x be a signal with finite support and factorization

X = X1 % Xp.
Then the signal

y = (xa[=]) * (el = no])

has the same FOURIER intensity | x| and all signals with the FOURIER intensity

|X| can be represented in this manner.

L

Nl



NON-NEGATIVITY CONSTRAINTS



PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS
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 The solutions of the phase retrieval problem have the form

=

=i

X(w) = e“™ ||a[N - 1]

J

1l
=

|8;

N-1

|_1 ™ -8).

J=1

+ A solution is non-negative if and only if all coefficients of

N-1

Q(z) = ]_I (z-B)

are non-negative.

J=1



PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS O compLexzERo pA

BRIGGS [1985]

Lemma

Op = (—1 )n 5,,(ﬂ1, e ,ﬁN_3).
Then Q has non-negative coefficients if and only if Bn-1 fulfils
On2l Bn-1 * = 2001 RBy-1 + 0, 2 0

forn=0,...,N—1,and if oN_3 is non-zero.

Assume that (Bn-2, Bn-1) is a conjugate zero pair unequal to zero, and define

Definition (Elementary symmetric polynomials)
The elementary symmetric polynomials S,, are defined by
So(Brs - Bru3) = D BB, (n=1,...,N=3)
1<ki<---<k,<N-3
aswellas Sp:=Tand S, :=0forn<Oand n> N - 3.

L

.



ONE COMPLEX ZERO PAIR:
BRrIGGs [1985]

Corollary

Assume that the ‘R,Bj < O0forj=1,...,N—=3. Then Q has non-negative
coefficients if and only if

PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS
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PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS
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Theorem (BEINERT [2017])
The sets of non-negative signals with support length N > 3 that

« can/cannot be recovered uniquely up to reflection

are unbounded sets of infinite LEBESGUE measure.

L
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ADDITIONAL DATA IN TIME DOMAIN



REAL CASE, END POINT: XU, YAN, CHANG [1987]

KNOWLEDGE OF ADDITIONAL MODULI APPLICATIONS: LANGEMANN, TASCHE [2008]

» Recover x from | x| and |x[N — 1 — £]| for an € within the fixed
support{0,...,N -1}

. Assume that there exist two non-trivial solutions x and x.

« The FouRrIER transform of x can be written as

N—

1
X(w) = e [laN=111] [181-

J=1 J=

=f

(e - B)),
1

and x has an analogous representation with ,B~j € {B; ,Ej_1}
« For [x[N—=1-=¢]| = [Xx[N -1 - ¢]|, VIETA’s formulae yield

N-1 N-1
nlﬂfl_%' > BB, :n|[3;.|—%. > B+ B,
j=1 j=1

1<ki<---<kg<N-1 1<ki<---<ke<N-1
which can be written as a polynomial equation in R 8; and JB;.

]




REAL CASE, END POINT: XU, YAN, CHANG [1987]

KNOWLEDGE OF ADDITIONAL MODULI APPLICATIONS: LANGEMANN, TASCHE [2008]

Theorem (BEINERT, PLONKA [2017])
Almost every signal x can be recovered from | x| and |x[N — 1 — £€]| for an ar-
bitrary € # (N=-1)/2 up to rotations, for € = (N-1)/2 up to reflection/conjugation
and rotation.
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KNOWLEDGE OF ADDITIONAL PHASES

- Recover x from | x|, argx[N — 1 — ¢;], and arg x|[N — 1 — &,] for
&1 # €5 within the fixed support {0,..., N —1}.

« Assume that there exist two non-trivial solutions x and x.

+ Rewrite phase conditions into the equation

R[S, (B)]3 [5{2 ) Se,(B) Se, (B)]

— [ S¢,(B)| R [Se,(B) S¢,(B) Se, (B)| = 0
with
B:={B:,....Bv-1} and  B:={Bi.....Bn1}.



KNOWLEDGE OF ADDITIONAL PHASES

Theorem (BEINERT, PLONKA [2017])

Let €1 and ¢, two different integers in {0, . .., N—1}. Then almost every signal
x can be uniquely recovered from | x| and the phases
argx[N—1-¢] and argx|[N—-1-¢£,] (&r+&#N-1).

For &1 + €, = N — 1, the recovery of the unknown signal is only unique up to
reflection/conjugation, except for the case where the phase of both end points

is given.




INTERFERENCE MEASUREMENTS



INTERFERENCE WITH REFERENCE SIGNAL fent cases K, FHaves [1993]

COMPLEX CASE: RAZ, DuDoVICH, NADLER [2013]

Theorem (BEINERT, PLONKA [2015])

Let x and h be complex-valued signals with finite support, and assume that the
factorization of their symbols
N =T
X(w) = ™M x[N; — 1] l_[ (e —n;)

j=1
and

h(w) _ elwnz h N2 _ 1 l_l —iw _ yj)

have no common zeros. Then x and h can be uniquely recovered from |x(w)]|,
|h(w)| and | x(w) + h(w)| up to common trivial ambiguities.




INTERFERENCE WITH REFERENCE SIGNAL

Sketch of proof

- Assume there are two solutions x| n], A[n] and x[n], F[n].

+ Use the factorization in the frequency domain:

X(w) = e“" X;(w) %2 (w) and ?(w) = el 3 (w) X (w),

h(w) = ™ hy(w)h(w) and  h(w) = 2% by (w) hy(w).
« Consider the identity
2
|%(w) +h(w)| B (@) + (o )|




SPARSITY CONSTRAINTS



SPARSE PHASE RETRIEVAL RANIERI, CHEBIRA, LU, VETTERLI [2013]

» Recover x with support length N and sparsity M := |supp x| from its
FOURIER intensity |X]|.

» Assume that the differences n — m with n # m and n, m € supp x are
pairwise distinct.

« Apply PRONY’s method to recover n — m and x[n] x[m| from | x| for all

n# mand n, m € supp x.

Theorem (BEINERT, PLONKA [2017])

Let x be a sparse signal. If
(i) the differences n — m differ pairwise for n,m € supp x, n # m
(ii) the coefficients satisfy | x[nmin]| # | X[Amax] |

then x can be uniquely recovered from3/2 M(M — 1) + 1 equispaced measure-

ments of | x| up to trivial ambiguities.

20



SUMMARY/OUTLOOK

Characterization of the ambiguities in the one-dimensional

discrete-time phase retrieval problem.
Investigation of the quality of different a priori conditions and
additional data:

« Non-negativity constraints,

- Additional signal information in time domain,

« Interference measurements,

 Sparsity constraints.

Phase retrieval in higher dimensions.

Transferring further results between the discrete-time and
continuous-time problem.

Investigation and development of numerical algorithms.
Consider further phase retrieval problems with respect to the

FRESNEL or short-time FOuURIER transform.

21
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