Discrete Fourier phase retrieval: ambiguities and uniqueness guarantees

Robert Beinert

Karl-Franzens-Universität Graz

9th International Conference

'Inverse Problems: Modeling & Simulation'

(Ċirkewwa, Mellieħa, Malta)

24 May 2018

DISCRETE-TIME PHASE RETRIEVAL

FORMULATION OF THE PROBLEM

Problem (Discrete-time phase retrieval)

Recover the unknown, complex-valued, and discrete-time signal $x \colon \mathbb{Z} \to \mathbb{C}$ with finite support from its FOURIER intensity

$$|\widehat{x}(\omega)| \qquad (\omega \in \mathbb{R}).$$

Definition (Discrete-time Fourier transform)

$$\widehat{x}(\omega) := \sum_{n \in \mathbb{Z}} x[n] e^{-i\omega n} \qquad (\omega \in \mathbb{R}).$$

Besides the true signal x, the phase retrieval problem is solved by

- the rotated signal $(e^{i\alpha} x[n])_{n \in \mathbb{Z}}$,
- the shifted signal $(x[n-n_0])_{n\in\mathbb{Z}}$,
- the reflected, conjugated signal $(\overline{x[-n]})_{n\in\mathbb{Z}}$.

1

Non-trivial ambiguities

FOURIER intensity: $|\hat{x}(\omega)|$

Definition (Trivial and non-trivial ambiguities)

All other occurring ambiguities are called *non-trivial*.

A *trivial ambiguity* is caused by rotation, shift, or reflection and conjugation.

Absolute value: |x[n]|

Phase: arg(x[n])

CHARACTERIZING THE SOLUTIONS

Definition (Autocorrelation signal)

$$a[n] := \sum_{k \in \mathbb{Z}} \overline{x[k]} \, x[k+n] \qquad (n \in \mathbb{Z}).$$

• The autocorrelation signal is conjugate symmetric, i.e.

$$\overline{a[-n]} = \sum_{k \in \mathbb{Z}} x[k] \, \overline{x[k-n]} = \sum_{k \in \mathbb{Z}} x[k+n] \, \overline{x[k]} = \underline{a[n]} \qquad (n \in \mathbb{Z}),$$

and has the support $\{-N+1, \ldots, N-1\}$, where N denotes the support length of x.

Definition (Autocorrelation function)

$$A(\omega) := \sum_{n \in \mathbb{Z}} a[n] e^{-i\omega n} = \sum_{n = -N+1}^{N-1} a[n] e^{-i\omega n}.$$

PHASE RETRIEVAL IN THE FREQUENCY DOMAIN

Relationship to the Fourier transform:

$$\begin{aligned} \left| \widehat{\mathbf{x}}(\omega) \right|^2 &= \left(\sum_{n \in \mathbb{Z}} \mathbf{x}[n] \, \mathrm{e}^{-\mathrm{i}\omega n} \right) \left(\sum_{k \in \mathbb{Z}} \overline{\mathbf{x}[k]} \, \mathrm{e}^{\mathrm{i}\omega k} \right) \\ &= \sum_{n \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \mathbf{x}[k+n] \, \overline{\mathbf{x}[k]} \, \mathrm{e}^{-\mathrm{i}\omega n} = \mathbf{A}(\omega). \end{aligned}$$

 The autocorrelation function is a non-negative trigonometric polynomial of degree N – 1.

Equivalent problem

Find a trigonometric polynomial B such that

$$|B(\omega)|^2 = A(\omega).$$

Definition (Associated polynomial)

$$P_A(e^{-i\omega}) = e^{-i\omega(N-1)} A(\omega).$$

• The algebraic polynomial P_A is thus defined by

$$P_A(z) := \sum_{n=0}^{2N-2} a[n-N+1] z^n$$
 with $a[-n] = \overline{a[n]}$.

- The zeros occur in pairs $(\gamma_j, \overline{\gamma}_i^{-1})$.
- P_A has the factorization

$$P_A(z) = a[N-1] \prod_{j=1}^{N-1} (z - \gamma_j) (z - \overline{\gamma}_j^{-1}).$$

• For $z := e^{-i\omega}$, the absolute value of the linear factors is

$$\begin{split} \left| \left(e^{-i\omega} - \gamma_j \right) \left(e^{-i\omega} - \overline{\gamma}_j^{-1} \right) \right| &= \left| \overline{\gamma}_j \right|^{-1} \left| e^{-i\omega} - \gamma_j \right| \left| \overline{\gamma}_j - e^{i\omega} \right| \\ &= \left| \gamma_j \right|^{-1} \left| e^{-i\omega} - \gamma_j \right|^2. \end{split}$$

A has the factorization

$$A(\omega) = |P_A(e^{-i\omega})| = |a[N-1]| \prod_{j=1}^{N-1} \left| \left(e^{-i\omega} - \gamma_j \right) \left(e^{-i\omega} - \overline{\gamma}_j^{-1} \right) \right|$$
$$= |a[N-1]| \prod_{j=1}^{N-1} |\beta_j|^{-1} \cdot \left| \prod_{j=1}^{N-1} \left(e^{-i\omega} - \beta_j \right) \right|^2 = |B(\omega)|^2$$
with $\beta_i \in (\gamma_i, \overline{\gamma}_i^{-1})$.

Theorem (Beinert, Plonka [2015])

Let A be a non-negative trigonometric polynomial. Then the problem

$$|B(\omega)|^2 = A(\omega)$$

has at least one solution. Every solution has a representation of the form

$$B(\omega) = e^{i\alpha + i\omega n_0} \sqrt{|a[N-1]| \prod_{j=1}^{N-1} |\beta_j|^{-1}} \cdot \prod_{j=1}^{N-1} (e^{-i\omega} - \beta_j),$$

where β_j can be chosen from the zero pair $(\gamma_j, \overline{\gamma}_j^{-1})$ of the associated polynomial P_A .

• Each non-trivial solution is completely determined by its corresponding zero set $\{\beta_1, \dots, \beta_{N-1}\}$.

Number of non-trivial ambiguities

Corollary

The number of non-trivial ambiguities may vary from 1 up to 2^{N-2} .

Proposition (Beinert [2015])

Let L be the number of distinct zero pairs $(\gamma_{\ell}, \overline{\gamma_{\ell}}^{-1})$ of P_A not lying on the unit circle, and let m_{ℓ} be the multiplicity of these zero pairs. The corresponding phase retrieval problem has

$$\left[\frac{1}{2}\prod_{\ell=1}^{L}(m_{\ell}+1)\right]$$

non-trivial ambiguities.

REPRESENTATION OF THE AMBIGUITIES IN TIME DOMAIN

Definition (Convolution of signals)

$$(x_1 * x_2)[n] := \sum_{k \in \mathbb{Z}} x_1[k] x_2[n-k].$$

Theorem (Beinert, Plonka [2015])

Let x be a signal with finite support and factorization

$$x=x_1*x_2.$$

Then the signal

$$y := e^{i\alpha} \left(\overline{x_1[-\cdot]} \right) * \left(x_2[\cdot - n_0] \right)$$

has the same FOURIER intensity $|\widehat{x}|$ and all signals with the FOURIER intensity $|\widehat{x}|$ can be represented in this manner.

Non-negativity constraints

PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS

The solutions of the phase retrieval problem have the form

$$\widehat{x}(\omega) = e^{i\omega n_0} \sqrt{|a[N-1]| \prod_{j=1}^{N-1} |\beta_j|^{-1}} \cdot \prod_{j=1}^{N-1} (e^{-i\omega} - \beta_j).$$

A solution is non-negative if and only if all coefficients of

$$Q(z) := \prod_{j=1}^{N-1} (z - \beta_j)$$

are non-negative.

Lemma

Assume that $(\beta_{N-2}, \beta_{N-1})$ is a conjugate zero pair unequal to zero, and define

$$\sigma_n := (-1)^n S_n(\beta_1, \ldots, \beta_{N-3}).$$

Then Q has non-negative coefficients if and only if β_{N-1} fulfils

$$|\sigma_{n-2}|\beta_{N-1}|^2 - 2\sigma_{n-1}\Re\beta_{N-1} + \sigma_n \ge 0$$

for n = 0, ..., N - 1, and if σ_{N-3} is non-zero.

Definition (Elementary symmetric polynomials)

The elementary symmetric polynomials S_n are defined by

$$S_n(\beta_1, ..., \beta_{N-3}) := \sum_{1 \le k_1 < \dots < k_n \le N-3} \beta_{k_1} \cdots \beta_{k_n} \qquad (n = 1, \dots, N-3)$$

as well as $S_0 := 1$ and $S_n := 0$ for n < 0 and n > N - 3.

Corollary

Assume that the $\Re \beta_j < 0$ for j = 1, ..., N-3. Then Q has non-negative coefficients if and only if

$$\Re \beta_{N-1} \le \sigma_1/2$$
 and $\left| \beta_{N-1} - \frac{\sigma_{n-1}}{\sigma_{n-2}} \right| \ge \frac{\sqrt{\sigma_{n-1}^2 - \sigma_n \sigma_{n-2}}}{\sigma_{n-2}}$

for n = 2, ..., N - 2 whenever the radius is real.

Example

PHASE RETRIEVAL OF NON-NEGATIVE SIGNALS

Theorem (BEINERT [2017])

The sets of non-negative signals with support length N > 3 that

• can/cannot be recovered uniquely up to reflection

are unbounded sets of infinite Lebesgue measure.

Additional data in time domain

- Recover x from $|\hat{x}|$ and $|x[N-1-\ell]|$ for an ℓ within the fixed support $\{0,\ldots,N-1\}$.
- Assume that there exist two non-trivial solutions x and \tilde{x} .
- The Fourier transform of x can be written as

$$\widehat{x}(\omega) = e^{i\alpha} \sqrt{|a[N-1]| \prod_{j=1}^{N-1} |\beta_j|^{-1}} \cdot \prod_{j=1}^{N-1} (e^{-i\omega} - \beta_j),$$

and $\widehat{\widetilde{x}}$ has an analogous representation with $\widetilde{\beta_j} \in \{\beta_j, \overline{\beta}_j^{-1}\}$

• For $|x[N-1-\ell]| = |\widetilde{x}[N-1-\ell]|$, Vieta's formulae yield

$$\prod_{j=1}^{N-1} |\beta_j|^{-\frac{1}{2}} \cdot \left| \sum_{1 \le k_1 < \dots < k_\ell \le N-1} \beta_{k_1} \cdots \beta_{k_\ell} \right| = \prod_{j=1}^{N-1} |\widetilde{\beta_j}|^{-\frac{1}{2}} \cdot \left| \sum_{1 \le k_1 < \dots < k_\ell \le N-1} \widetilde{\beta}_{k_1} \cdots \widetilde{\beta}_{k_\ell} \right|,$$

which can be written as a polynomial equation in $\Re \beta_j$ and $\Im \beta_j$.

Theorem (Beinert, Plonka [2017])

Almost every signal x can be recovered from $|\widehat{x}|$ and $|x[N-1-\ell]|$ for an arbitrary $\ell \neq (N-1)/2$ up to rotations, for $\ell = (N-1)/2$ up to reflection/conjugation and rotation.

KNOWLEDGE OF ADDITIONAL PHASES

- Recover x from $|\widehat{x}|$, arg $x[N-1-\ell_1]$, and arg $x[N-1-\ell_2]$ for $\ell_1 \neq \ell_2$ within the fixed support $\{0, \ldots, N-1\}$.
- Assume that there exist two non-trivial solutions x and \tilde{x} .
- · Rewrite phase conditions into the equation

$$\Re \left[S_{\ell_1}(B) \right] \Im \left[\overline{S_{\ell_2}(\widetilde{B})} \, S_{\ell_2}(B) \, S_{\ell_1}(\widetilde{B}) \right]$$
$$- \Im \left[S_{\ell_1}(B) \right] \Re \left[\overline{S_{\ell_2}(\widetilde{B})} \, S_{\ell_2}(B) \, S_{\ell_1}(\widetilde{B}) \right] = 0$$

with

$$B := \{\beta_1, \dots, \beta_{N-1}\}$$
 and $\widetilde{B} := \{\widetilde{\beta}_1, \dots, \widetilde{\beta}_{N-1}\}.$

KNOWLEDGE OF ADDITIONAL PHASES

Theorem (Beinert, Plonka [2017]

Let ℓ_1 and ℓ_2 two different integers in $\{0, \dots, N-1\}$. Then almost every signal x can be uniquely recovered from $|\widehat{x}|$ and the phases

$$\arg x[N-1-\ell_1]$$
 and $\arg x[N-1-\ell_2]$ $(\ell_1+\ell_2\neq N-1)$.

For $\ell_1 + \ell_2 = N - 1$, the recovery of the unknown signal is only unique up to reflection/conjugation, except for the case where the phase of both end points is given.

Interference measurements

Theorem (Beinert, Plonka [2015])

Let x and h be complex-valued signals with finite support, and assume that the factorization of their symbols

$$\widehat{x}(\omega) = e^{i\omega n_1} x[N_1 - 1] \prod_{j=1}^{N_1 - 1} (e^{-i\omega} - \eta_j)$$

and

$$\widehat{h}(\omega) = e^{i\omega n_2} h[N_2 - 1] \prod_{j=1}^{N_2 - 1} (e^{-i\omega} - \gamma_j)$$

have no common zeros. Then x and h can be uniquely recovered from $|\widehat{x}(\omega)|$, $|\widehat{h}(\omega)|$ and $|\widehat{x}(\omega) + \widehat{h}(\omega)|$ up to common trivial ambiguities.

Sketch of proof

- Assume there are two solutions x[n], h[n] and $\tilde{x}[n]$, $\tilde{h}[n]$.
- Use the factorization in the frequency domain:

$$\widehat{x}(\omega) = e^{i\omega n_1} \widehat{x}_1(\omega) \widehat{x}_2(\omega)$$
 and $\widehat{x}(\omega) = e^{i\alpha_1} e^{i\omega k_1} \widehat{x}_1(\omega) \overline{\widehat{x}_2(\omega)}$,

$$\widehat{h}(\omega) = e^{i\omega n_2} \, \widehat{h}_1(\omega) \, \widehat{h}_2(\omega)$$
 and $\widehat{\widehat{h}}(\omega) = e^{i\alpha_2} e^{i\omega k_2} \, \widehat{h}_1(\omega) \, \overline{\widehat{h}_2(\omega)}$.

Consider the identity

$$\left|\widehat{x}(\omega) + \widehat{h}(\omega)\right|^2 = \left|\widehat{\widetilde{x}}(\omega) + \widehat{\widetilde{h}}(\omega)\right|^2$$
.

Sparsity constraints

- Recover x with support length N and sparsity $M := |\sup x|$ from its FOURIER intensity $|\widehat{x}|$.
- Assume that the differences n-m with $n \neq m$ and $n, m \in \text{supp } x$ are pairwise distinct.
- Apply Prony's method to recover n-m and $x[n] \overline{x[m]}$ from $|\widehat{x}|$ for all $n \neq m$ and $n, m \in \text{supp } x$.

Theorem (Beinert, Plonka [2017])

Let x be a sparse signal. If

- (i) the differences n m differ pairwise for $n, m \in \text{supp } x, n \neq m$
- (ii) the coefficients satisfy $|x[n_{min}]| \neq |x[n_{max}]|$

then x can be uniquely recovered from 3/2 M(M-1)+1 equispaced measurements of $|\widehat{x}|$ up to trivial ambiguities.

SUMMARY/OUTLOOK

- Characterization of the ambiguities in the one-dimensional discrete-time phase retrieval problem.
- Investigation of the quality of different a priori conditions and additional data:
 - · Non-negativity constraints,
 - Additional signal information in time domain,
 - · Interference measurements,
 - Sparsity constraints.
- · Phase retrieval in higher dimensions.
- Transferring further results between the discrete-time and continuous-time problem.
- · Investigation and development of numerical algorithms.
- Consider further phase retrieval problems with respect to the FRESNEL or short-time FOURIER transform.

Thank you for the attention.

- R. Beinert, G. Plonka. Sparse phase retrieval of one-dimensional signals by Prony's method.
 Frontiers in Applied Mathematics and Statistics. 3(5) (2017).
- T. Bendory, R. Beinert, Y. C. Eldar. Fourier Phase Retrieval: Uniqueness and Algorithms. In:
 Compressed Sensing and its Applications. Birkhäuser, 2017 (Applied and Numerical Harmonic Analysis), Chapter 2, 55-91
- R. Beinert. Ambiguities in one-dimensional phase retrieval from magnitudes of a linear canonical transform. ZAMM, Journal of Applied Mathematics and Mechanics. (2017).
- R. Beinert. Non-negativity constraints in the one-dimensional discrete-time phase retrieval problem. *Information and Inference: A Journal of the IMA*. 6(2) (2017), pp. 213–224.
- R. Beinert. One-dimensional phase retrieval with additional interference measurements. *Results in Mathematics.* **72**(1–2) (2017), pp. 1–24.
- R. Beinert, G. Plonka. Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain. Applied and Computational Harmonic Analysis. (2017).
- R. Beinert, G. Plonka. Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. *Journal of Fourier Analysis and Applications*. **21**(6) (2015), pp. 1169–1198.