76.
| G. D'Aguì, A. Sciammetta, P. Winkert, On the Fučík spectrum of the p-Laplacian with no-flux boundary condition, Nonlinear Anal. Real World Appl., accepted 2022.
|
75.
| G. D'Aguì, A. Sciammetta, E. Tornatore, P. Winkert, Parametric Robin double phase problems with critical growth on the boundary, Discrete Contin. Dyn. Syst. Ser. S, accepted 2022.
|
74.
| C. Farkas, A. Fiscella, P. Winkert, On a class of critical double phase problems, J. Math. Anal. Appl. 515 (2022), no. 2, 126420, 16 pp.
|
73.
| F. Vetro, P. Winkert, Existence, uniqueness and asymptotic behavior of parametric anisotropic (p,q)-equations with convection, Appl. Math. Optim. 86 (2022), no. 2, Paper No. 18, 18 pp.
|
72.
| S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with multivalued convection and mixed boundary value conditions, Dyn. Syst. Ser. B, accepted 2022.
|
71.
| R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On critical double phase Kirchhoff problems with singular nonlinearity, Rend. Circ. Mat. Palermo (2), accepted 2022.
|
70.
| S. Zeng, V.D. Rădulescu, P. Winkert, Double phase obstacle problems with variable exponent, Adv. Differential Equations 27 (2022), no. 9-10, 611–645.
|
69.
| W. Liu, G. Dai, N.S. Papageorgiou, P. Winkert, Existence of solutions for singular double phase problems via the Nehari manifold method, Anal. Math. Phys. 12 (2022), no. 3, Paper No. 75, 25 pp.
|
68.
| Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differential Equations 323 (2022), 182–228.
|
67.
| S. Zeng, Y. Bai, P. Winkert, J.-C. Yao, Identification of discontinuous parameters in double phase obstacle problems, Adv. Nonlinear Anal., accepted 2022.
|
66.
| K. Ho, Y.-H. Kim, P. Winkert, C. Zhang, The boundedness and Hölder continuity of solutions to elliptic equations involving variable exponents and critical growth, J. Differential Equations 313 (2022), 503–532.
|
65.
| S. Zeng, V.D. Rădulescu, P. Winkert, Double phase implicit obstacle problems with convection and multivalued mixed boundary value conditions, SIAM J. Math. Anal. 54 (2022), no. 2, 1898–1926.
|
64.
| W. Liu, P. Winkert, Combined effects of singular and superlinear nonlinearities in singular double phase problems in RN, J. Math. Anal. Appl. 507 (2022), no. 2, 125762, 19 pp.
|
63.
| Á. Crespo-Blanco, N.S. Papageorgiou, P. Winkert, Parametric superlinear double phase problems with singular term and critical growth on the boundary, Math. Methods Appl. Sci. 45 (2022), no. 4, 2276–2298.
|
62.
| N.S. Papageorgiou, P. Winkert, A multiplicity theorem for anisotropic Robin equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33 (2022), no. 1, 1–22.
|
61.
| S. El Manouni, G. Marino, P. Winkert, Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian, Adv. Nonlinear Anal. 11 (2022), no. 1, 304–320.
|
60.
| N.S. Papageorgiou, P. Winkert, On a class of singular anisotropic (p,q)-equations, Rev. Mat. Complut. 35 (2022), no. 2, 545–571.
|
59.
| C. Farkas, A. Fiscella, P. Winkert, Singular Finsler double phase problems with nonlinear boundary condition, Adv. Nonlinear Stud. 21 (2021), no. 4, 809–825.
|
58.
| N.S. Papageorgiou, P. Winkert, Existence and nonexistence of positive solutions for singular (p,q)-equations with superdiffusive perturbation, Results Math. 76 (2021), no. 4, Paper No. 169, 20 pp.
|
57.
| N.S. Papageorgiou, P. Winkert, Positive solutions for singular anisotropic (p,q)-equations, J. Geom. Anal. 31 (2021), no. 12, 11849–11877.
|
56.
| C. Farkas, P. Winkert, An existence result for singular Finsler double phase problems, J. Differential Equations 286 (2021), 455–473.
|
55.
| L. Gasiński, P. Winkert, Sign changing solution for a double phase problem with nonlinear boundary condition via the Nehari manifold, J. Differential Equations 274 (2021), 1037-1066.
|
54.
| N.S. Papageorgiou, P. Winkert, Singular Dirichlet (p,q)-equations, Mediterr. J. Math. 18 (2021), no. 4, Paper No. 141, 20 pp.
|
53.
| S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal. 10 (2021), no. 1, 659–672.
|
52.
| A. Bahrouni, V.D. Rădulescu, P. Winkert, Small perturbations of Robin problems driven by the p-Laplacian plus a positive potential, Topol. Methods Nonlinear Anal. 57 (2021), no. 2, 663–673.
|
51.
| N.S. Papageorgiou, P. Winkert, (p,q)-Equations with singular and concave convex nonlinearities, Appl. Math. Optim. 84 (2021), no. 3, 2601–2628.
|
50.
| S. Zeng, L. Gasiński, P. Winkert, Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl. 501 (2021), no. 1, 123997, 12 pp.
|
49.
| N.S. Papageorgiou, P. Winkert, Positive solutions for weighted singular p-Laplace equations via Nehari manifolds, Appl. Anal. 100 (2021), no. 11, 2436–2448.
|
48.
| A. Bahrouni, V.D. Rădulescu, P. Winkert, Double phase problems with variable growth and convection for the Baouendi-Grushin operator, Z. Angew. Math. Phys. 71 (2020), no. 6, 183.
|
47.
| A. Bahrouni, V.D. Rădulescu, P. Winkert, Robin fractional problems with symmetric variable growth, J. Math. Phys. 61 (2020), no. 10, 101503.
|
46.
| S. Zeng, Y. Bai, L. Gasiński, P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations 59 (2020), no. 5, 176.
|
45.
| G. Marino, P. Winkert, Existence and uniqueness of elliptic systems with double phase operators and convection terms, J. Math. Anal. Appl. 492 (2020), no. 1, 124423, 13 pp.
|
44.
| A. Bahrouni, V.D. Rădulescu, P. Winkert, A critical point theorem for perturbed functionals and low perturbations of differential and nonlocal systems, Adv. Nonlinear Stud. 20 (2020), no. 3, 663-674.
|
43.
| G. Marino, P. Winkert, L∞-bounds for general singular elliptic equations with convection term, Appl. Math. Lett. 107 (2020), 106410, 6 pp.
|
42.
| L. Gasiński, P. Winkert, Constant sign solutions for double phase problems with superlinear nonlinearity, Nonlinear Anal. 195 (2020), 111739, 9 pp.
|
41.
| Y. Bai, L. Gasiński, P. Winkert, S. Zeng, W1,p versus C1: The nonsmooth case involving critical growth, Bull. Math. Sci. 10 (2020), no. 3, 2050009, 15 pp.
|
40.
| L. Gasiński, P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Differential Equations 268 (2020), no. 8, 4183-4193.
|
39.
| G. Marino, P. Winkert, Global a priori bounds for weak solutions of quasilinear elliptic systems with nonlinear boundary condition, J. Math. Anal. Appl. 482 (2020), no. 2, 123555, 19 pp.
|
38.
| S.A. Marano, P. Winkert, Corrigendum to „On a quasilinear elliptic problem with convection term and nonlinear boundary condition“ [Nonlinear Anal. 187 (2019) 159–169], Nonlinear Anal. 189 (2019), 111578.
|
37.
| G. D’Aguì, B. Di Bella, P. Winkert, Two positive solutions for nonlinear fourth-order elastic beam equations, Electron. J. Qual. Theory Differ. Equ. 2019, Paper No. 37, 12 pp.
|
36.
| G. Bonanno, G. D’Aguì, P. Winkert, A two critical points theorem for non-differentiable functions and applications to highly discontinuous PDE’s, Pure Appl. Funct. Anal. 4 (2019), no. 4, 709–725.
|
35.
| S.A. Marano, P. Winkert, On a quasilinear elliptic problem with convection term and nonlinear boundary condition, Nonlinear Anal. 187 (2019), 159–169.
|
34.
| D. Motreanu, P. Winkert, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett. 95 (2019), 78–84.
|
33.
| N.S. Papageorgiou, P. Winkert, Nonlinear systems with Hartman-type perturbations, Monatsh. Math. 190 (2019), no. 2, 389–404.
|
32.
| G. Marino, P. Winkert, Moser iteration applied to elliptic equations with critical growth on the boundary, Nonlinear Anal. 180 (2019), 154–169.
|
31.
| N.S. Papageorgiou, P. Winkert, Solutions with sign information for nonlinear nonhomogeneous problems, Math. Nachr. 292 (2019), no. 4, 871–891.
|
30.
| N.S. Papageorgiou, P. Winkert, Singular p-Laplacian equations with superlinear perturbation, J. Differential Equations 266 (2019), no. 2-3, 1462–1487.
|
29.
| N.S. Papageorgiou, P. Winkert, Double resonance for Robin problems with indefinite and unbounded potential, Discrete Contin. Dyn. Syst. Ser. S 11 (2018), no. 2, 323–344.
|
28.
| N. S. Papageorgiou, P. Winkert, Asymmetric (p,2)-equations, superlinear at +∞, resonant at -∞, Bull. Sci. Math. 141 (2017), no. 5, 443–488.
|
27.
| S. El Manouni, H. Hajaiej, P. Winkert, Nonlinear problems for the fractional Laplacian in RN involving parameters, Minimax Theory Appl. 2 (2017), no. 2, 265–283.
|
26.
| N.S. Papageorgiou, P.Winkert, Positive solutions for nonlinear nonhomogeneous Dirichlet problems with concave-convex nonlinearities, Positivity 20 (2016), no. 4, 945–979.
|
25.
| P. Winkert, R. Zacher, Global a priori bounds for weak solutions to quasilinear parabolic equations with nonstandard growth, Nonlinear Anal. 145 (2016), 1-23.
|
24.
| N.S. Papageorgiou, P. Winkert, Nonlinear Robin problems with a reaction of arbitrary growth, Ann. Mat. Pura Appl. (4) 195 (2016), no. 4, 1207–1235.
|
23.
| G. Bonanno, G. D’Aguì, P. Winkert, Sturm-Liouville equations involving discontinuous nonlinearities, Minimax Theory Appl. 1 (2016), no. 1, 125–143.
|
22.
| N.S. Papageorgiou, P. Winkert, Nonlinear nonhomogeneous Dirichlet equations involving a superlinear nonlinearity, Results Math. 70 (2016), no. 1, 31–79.
|
21.
| P. Winkert, R. Zacher, Corrigendum to „A priori bounds for weak solutions to elliptic equations with nonstandard growth“ [Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 865–878.], Discrete Contin. Dyn. Syst. Ser. S, veröffentlicht als Note, 2015, 1–3.
|
20.
| S. El Manouni, N.S. Papageorgiou, P. Winkert, Parametric nonlinear nonhomogeneous Neumann equations involving a nonhomogeneous differential operator, Monatsh. Math. 177 (2015), no. 2, 203–233.
|
19.
| N.S. Papageorgiou, P. Winkert, Resonant (p; 2)-equations with concave terms, Appl. Anal. 94 (2015), no. 2, 342–360.
|
18.
| P. Winkert, On the boundedness of solutions to elliptic variational inequalities, Set-Valued Var. Anal. 22 (2014), no. 4, 763–781.
|
17.
| G. Bonanno, P. Winkert, Multiplicity results to a class of variational-hemivariational inequalities, Topol. Methods Nonlinear Anal. 43 (2014), no. 2, 493–516.
|
16.
| N.S. Papageorgiou, P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014), no. 3, 747–773.
|
15.
| G. Bonanno, D. Motreanu, P. Winkert, Boundary value problems with nonsmooth potential, constraints and parameters, Dynam. Systems Appl. 22 (2013), no. 2-3, 385–396.
|
14.
| P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal. 12 (2013), no. 2, 785–802.
|
13.
| P. Winkert, R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 4, 865–878.
|
12.
| D. Motreanu, P. Winkert, On the Fučík spectrum for the p-Laplacian with Robin boundary condition, Nonlinear Anal. 74 (2011), no. 14, 4671–4681.
|
11.
| G. Bonanno, D. Motreanu, P. Winkert, Variational-hemivariational inequalities with small perturbations of nonhomogeneous Neumann boundary conditions, J. Math. Anal. Appl. 381 (2011), no. 2, 627–637.
|
10.
| P. Winkert, Multiple solution results for elliptic Neumann problems involving setvalued nonlinearities, J. Math. Anal. Appl. 377 (2011), no. 1, 121–134.
|
9.
| D. Motreanu, P. Winkert, Variational-hemivariational inequalities with nonhomogeneous Neumann boundary condition, Matematiche (Catania) 65 (2010), no. 2, 109–119.
|
8.
| P. Winkert, Sign-changing and extremal constant-sign solutions of nonlinear elliptic Neumann boundary value problems, Bound. Value Probl. 2010, Art. ID 139126, 22 pp.
|
7.
| P. Winkert, Local C1-minimizers versus local W1,p-minimizers of nonsmooth functionals, Nonlinear Anal. 72 (2010), no. 11, 4298–4303.
|
6.
| P. Winkert, L∞-estimates for nonlinear elliptic Neumann boundary value problems, NoDEA Nonlinear Differential Equations Appl. 17 (2010), no. 3, 289–302.
|
5.
| P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values, Adv. Differential Equations 15 (2010), no. 5-6, 561–599.
|
4.
| P. Winkert, Entire extremal solutions for elliptic inclusions of Clarke’s gradient type, Z. Anal. Anwend. 29 (2010), no. 1, 63–75.
|
3.
| S. Carl, P. Winkert, General comparison principle for variational-hemivariational inequalities, J. Inequal. Appl. 2009, Art. ID 184348, 29 pp.
|
2.
| P. Brückmann, P. Winkert, T-symmetrical tensor differential forms with logarithmic poles along a hypersurface section, Int. J. Pure Appl. Math. 46 (2008), no. 1, 111–136.
|
1.
| P. Winkert, Discontinuous variational-hemivariational inequalities involving the p-Laplacian, J. Inequal. Appl. 2007, Art. ID 13579, 11 pp.
|