Home Publications Undergraduates Postgraduates Postdocs Calendar Contact

STAFF
  Jeroen Lamb  
  Martin Rasmussen  
  Dmitry Turaev  
  Sebastian van Strien  
HONORARY STAFF
Tiago Pereira
POSTDOCS
Dongchen Li
Iacopo Longo
Eeltje Nijholt
Doan Thai Son
PHD STUDENTS
Bernat Bassols-Cornudella
Chris Chalhoub
Hugo Chu
Matheus de Castro
Akshunna Dogra
Michal Fedorowicz
David Fox
Emilia Gibson
Vincent Goverse
Amir Khodaeian Karim
Victoria Klein
Chek Lau
Ziyu Li
Tianyi Liu
Dmitrii Mints
Leon Staresinic
Giuseppe Tenaglia
VISITORS
Ole Peters
Cristina Sargent
Bill Speares
RELATED STAFF
Mauricio Barahona
Davoud Cheraghi
Martin Hairer
Darryl Holm
Xue-Mei Li
Greg Pavliotis
Kevin Webster

DynamIC Seminars (Complete List)

Name Title Date Time Room
Juan Patino Echeverria (University of Auckland)Transitions to wild chaos in a four-dimensional Lorenz-like systemAbstract: Wild chaos is a form of higher-dimensional chaotic dynamics that can only arise in vector fields of dimension at least four. This talk explores wild chaos in a four-dimensional system of differential equations, which is an extension of the classic Lorenz equations. Recently, Gonchenko, Kazakov and Turaev (2021) showed, via the computation of Lyapunov exponents, that this system has a wild chaotic attractor at a particular point in parameter space. To explain how this wild chaotic attractor arises geometrically, we perform a bifurcation analysis of the system in a two-parameter setting. As a starting point, we continue the one-parameter bifurcation structure of the classic Lorenz equations when the relevant new parameter is “switched on”. We find that the well-known homoclinic explosion point of the Lorenz system unfolds and gives rise to infinite cascades of curves of Shilnikov-type global connections in the four-dimensional system. These connections are formed by the unstable manifold of the origin, which plays an essential role in the emergence of complicated dynamics in the system. We also compute the kneading diagram that encodes how this one-dimensional manifold repeatedly moves around a pair of equilibria. In combination with the direct computation of curves of global bifurcations, the kneading diagram provides insight that helps identify regions where wild chaos may occur. Tuesday, 4 June 2024 13:00 Huxley 140
Emmanuel Fleurentin (George Mason University and UNC Chapel Hill)Investigating Most Probable Escape Paths over Periodic Boundaries: a Dynamical Systems ApproachAbstract: Noise-induced tipping (N-tipping) emerges when random fluctuations prompt transitions from one (meta)stable state to another, potentially as a rare event. In this talk, we delineate new techniques for determining Most Probable Escapes Paths (MPEPs) in stochastic differential equations over periodic boundaries. We utilize a dynamical system approach to unravel MPEPs for the intermediate noise regime. We discuss the framework for computing the MPEPs by first looking at intersections of stable and unstable manifolds of invariant sets of a Hamiltonian system derived from the Euler-Lagrange equations of the Freidlin-Wentzell (FW) functional. The Maslov index helps identify which critical points of the FW functional are local minimizers and assists in explaining the effects of the interaction of noise and the deterministic flow. The Onsager-Machlup functional, which is treated as a perturbation of the FW functional, will provide a selection mechanism to pick out the MPEP. We will illustrate our approach and compare our theoretical prediction with Monte Carlo simulations in the Inverted Van der Pol system and a carbon cycle model. Tuesday, 18 June 2024 13:00 Huxley 140

DynamIC Workshops and Mini-Courses (Complete List)

Title Date Venue
CHAOS (Homoclinic Bifurcations, Strange Attractors, Arnold Diffusion, Fermi Acceleration, Solitons)Sunday, 24 September 2023 – Friday, 29 September 2023Nesin Math Village, Izmir, Turkey
Mini-Workshop on Heterodimensional DynamicsWednesday, 2 November 2022Imperial College London

Short-term DynamIC Visitors (Complete List)

NameAffiliationArrivalDepartureHost
No visitors scheduled currently

Links